Answer:
Mg
Explanation:
The standard reduction potentials are
<u>E°/V
</u>
Au³⁺(aq ) + 3e⁻ ⟶ Au(s); 1.42
Hg²⁺(aq) + 2e⁻ ⟶ Hg(l); 0.85
Ag⁺(aq) + e⁻ ⟶ Ag(s); 0.80
Cu²⁺(aq) + 2e⁻ ⟶ Cu(s); 0.34
Mg2+(aq) + 2e- ⟶ Mg(s); -2.38
The more negative the standard reduction potential, the stronger the metal is as a reducing agent.
Mg is the only metal with a standard reduction potential lower than that of Cu, so
Only Mg will react spontaneously with Cu²⁺.
Answer:
V = 34.55 L
Explanation:
Given that,
No of moles, n = 1.4
Temperature, T = 20°C = 20 + 273 = 293 K
Pressure, P = 0.974 atm
We need to find the volume of the gas. It can be calculated using Ideal gas equation which is :
PV=nRT
R is gas constant, 
Finding for V,

So, the volume of the gas is 34.55 L.
Given that the volume and amount of water are kept constant,
P/T = constant
P₁/T₁ = P₂/T₂
Normal atmospheric pressure is 746 mmHg and normal boiling point of water is 100 °C.
746/100 = 589/T₂
T₂ = 79.0 °C
Here is the answer for the three of them
<span>N20 = 16 e-
</span><span>SeCl2 =20
</span><span>PBr3 = 26
Remember that t</span><span>o find the valence electrons in an atom you need to identify what group the element is in. An element in group 1A has 1 valence electron. If the element is in group 2A, then it has two valence electrons.</span>
Answer:
In chemistry and quantum mechanics, an orbital is a mathematical function that describes the wave-like behavior of an electron, electron pair, or (less commonly) nucleons. An orbital can contain two electrons with paired spins and is often associated with a specific region of an atom.
Explanation: