Answer:
Olá, a resposta que você está procurando é, na verdade, plasma mais refração. Eu estou usando um tradutor para ajudá-lo agora, então eu espero que você não se importe.
Explanation:
The mass (in grams) of iron, Fe that can be made from 21.5 g of Fe₂O₃ is 15.04 g
We'll begin by writing the balanced equation for the reaction. This is given below:
2Fe₂O₃ -> 4Fe + 3O₂
- Molar mass of Fe₂O₃ = 159.7 g/mol
- Mass of Fe₂O₃ from the balanced equation = 2 × 159.7 = 319.4 g
- Molar mass of Fe = 55.85 g/mol
- Mass of Fe from the balanced equation = 4 × 55.85 = 223.4 g
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
<h3>How to determine the mass of iron, Fe produced</h3>
From the balanced equation above,
319.4 g of Fe₂O₃ decomposed to produce 223.4 g of Fe
Therefore,
21.5 g of Fe₂O₃ will decompose to produce = (21.5 × 223.4) / 319.4 = 15.04 g of Fe
Thus, 15.04 g of Fe were produced.
Learn more about stoichiometry:
brainly.com/question/9526265
#SPJ1
Answer:
19.3 L
Explanation:
V= n × 22.4
where V is volume and n is moles
First, to find the moles of CO2, divide 38.0 by the molecular weight of CO2 which is 44.01
n= m/ MM
n= 38/ 44.01
n= 0.86344012724
V= 0.86344012724 × 22.4
V= 19.3410588502 L
V= 19.3 L
At almost the opposite point on the Earth's surface, the "P" waves reappear. The shadow zone exists because the waves are refracted as they pass through the boundary between the mantle and the core and are diverted from their original paths.
Explanation:
Charles' law gives the relationship between the volume and the temperature of the gas. Mathematically,
Volume ∝ Temperature
i.e. 
We have, V₁ = 1.6 L, T₁ = 278 K, T₂ = 253, V₂=?

So, the new volume is 1.45 L.