1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
13

2

Physics
1 answer:
BigorU [14]3 years ago
3 0
Could you maybe show us the diagram
You might be interested in
A. max potential energy
tino4ka555 [31]

Answer:

a. max potential energy

4 0
3 years ago
Learning Goal:
Rudiy27

Answer:

The questions are not complete so this is the complete questions

1. How much work W does the motor do on the platform during this process?

2. What is the angular velocity ωf of the platform at the end of this process?

3. What is the rotational kinetic energy, Ek, of the platform at the end of the process described above?

4. How long does it take for the motor to do the work done on the platform calculated in Part 1?

5. What is the average power delivered by the motor in the situation above?

6. . Note that the instantaneous power P delivered by the motor is directly proportional to ω, so P increases as the platform spins faster and faster. How does the instantaneous power P•f being delivered by the motor at the time t•f compare to the average power

P(average) calculated in Part e?

Explanation:

Given that,

The torque τ=25Nm

Moment of inertia I =50kgm²

The platform is initially at rest,

ω•i=0 rad/sec

Revolution the torque produce is 12

Then, θ=12 revolution

1 revolution=2πrad

So, θ=24πrad

1. Work done in a rotational motion is give as

W=τ•Δθ

Given that the τ=25Nm and the initial angular displacement is 0rad

The final angular displacement is 24πrad

Δθ =(θ2-θ1)

Δθ=24π-0

Δθ=24πrad

Then,

W=τ•Δθ

W=25(24π)

W=25×24π

W=1884.96J

To 4s.f, W=1885J

2. Final angular velocity ωf

Using the angular equation

ω•f²=ω•i²+2•α•Δθ

We need to get angular acceleration

The torque is given as

τ=I•α

Given that,

I is moment if inertia =50kgm²

τ=25Nm

α=τ/I

α= 25/50

α=0.5rad/s²

Now, using the angular acceleration

ω•f²=ω•i²+2•α•Δθ

ω•f²=0²+2×0.5×24π

ω•f²=0+75.398

ω•f²=75.398

ω•f=√75.398

ω•f=8.68 rad/sec.

3. We need to find rotational Kinetic energy and it is given as

K.E, = ½I•ω²

Given that, I=50kgm² and ω•f=8.68rad/sec

Then,

K.E, =½I•ω²

K.E, =½×50×8.68²

K.E, =1884.96J

To 4s.f,

K.E, =1885J

Which is the same as the work done by the motor.

4. Time taken to complete part 1,

Using the rotational equation

ω•f=ω•i+α•t

Since, ω•f=8.68 rad/sec and ω•i=0

And α=0.5rad/s²

Then,

ω•f=ω•i+α•t

8.68=0+0.5t

8.68=0.5t

Then, t=8.68/0.5

t=17.36secs

5. The average power of rotational motion is given as

P(average) =Workdone/timetaken

Since,

Work done =1884.96J

Time taken =17.36sec

P(average) =Workdone/timetaken

P(average)=1884.96/17.36

P(average)= 108.58Watts

To 4s.f

P(average)=108.6Watts

6. We need to find •, it is given as

• =τ•ωf

Given that, ω•f=8.68rad/sec, τ=25Nm

•=25×8.68

•=217Watts

Then, the ratio of • to P(average) is

Ratio = •/ P(average)

Ratio= 217/108.58

Ratio=1.9985

Then, the ratio is approximately 2

Ratio=2

5 0
4 years ago
how many bits are required to sample an incoming signal 4000 times per second using 64 different amplitude level
Gelneren [198K]

Answer:

6 bits

Explanation:

The quality of digitized signal can be improved by reducing quantizing error. This is done by increasing the number of amplitude levels, thereby minimizing the difference between the levels and hence producing a smoother signal.

Also, Sampling frequently (also known as oversampling) can help in improving signal quality.

To get the number of bits, we use:

2ⁿ = amplitude level

where n is the number of bits.

Given an amplitude level of 64, hence:

2ⁿ = 64

2ⁿ = 2⁶

n = 6 bits

6 0
3 years ago
An airplane during departure has a constant acceleration of 3 m / s².
Rama09 [41]

Constant acceleration of plane = 3m/s²

a) Speed of the plane after 4s

Acceleration = speed/time

3m/s² = speed/4s

S = 12m/s

The speed of the plane after 4s is 12m/s.

b) Flight point will be termed as the point the plane got initial speed, u, 20m/s

Find speed after 8s, v

a = 3m/s²

from,

a = <u>v</u><u> </u><u>-</u><u> </u><u>u</u>

t

3 = <u>v</u><u> </u><u>-</u><u> </u><u>2</u><u>0</u>

8

24 = v - 20

v = 44m/s

After 8s the plane would've 44m/s speed.

6 0
3 years ago
Estimate the order of magnitude of the length of a football field,
marissa [1.9K]

Answer:

d

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Bone has a Young’s modulus of about
    14·1 answer
  • Can we see different colors but think we can see the same colors as another person?​
    14·2 answers
  • What is the complex and non linear process of energy flow between species called
    10·2 answers
  • A ball thrown horizontally from an apartment balcony hits the ground in 5 seconds. If the horizontal velocity of the ball is dou
    11·1 answer
  • Sarah bikes 15 miles in 70 minutes. Which is her average speed per minute?
    5·1 answer
  • A golfer rides in a golf cart at an average speed of 3.10 m/s for 21.0 s. she then gets out of the cart and starts walking at an
    6·1 answer
  • This is how fluorine appears in the periodic table. Which is one piece of information that "9” gives about an atom of fluorine?
    5·2 answers
  • If the horizontal component of the resultant vector is -4.856 m/s and the vertical component is -9.365 m/s, what is the directio
    12·1 answer
  • Particulate Motion Unit Test Part 2
    7·2 answers
  • Differences between freezing point and melting point (Atleast 5 differences)​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!