Answer:If you look at the image of the toy car in the mirror, it will appear to be the same ... However, there is a virtual focal point on the other side of the mirror if we follow them ... Concave mirrors, on the other hand, can have real images. ... Naturally, in concave mirror, the closer the image to the mirror, the bigger the image formed.
Answer:
Net displacement = 0
Distance traveled = 2PQ <_up and down
Explanation:
0.25 m/s squared
hope this helps x
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired
Answer:
Increasing the speed of an object decreases its motion energy. Increasing the speed of an object increases its motion energy. Increasing the speed of an object does not affect its motion energy. Whether or not its motion energy is affected depends on how much its speed was increased.
Explanation: