Answer:a b c
Explanation: I’m not sure tho
Answer:
180 Newton(N)
Explanation:
force =mass *acceleration
=60 * 3
=180 kgm/s^2
=180 N
Answer:
Total impulse =
= Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.

Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:

The final momentum of the car is given as:

Therefore, the impulse is given as:

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.
Answer:
fb = 240.35 Hz
Explanation:
In order to calculate the beat frequency generated by the first modes of each, organ and tube, you use the following formulas for the fundamental frequencies.
Open tube:
(1)
vs: speed of sound = 343m/s
L: length of the open tube = 0.47328m
You replace in the equation (1):
Closed tube:

L': length of the closed tube = 0.702821m

Next, you use the following formula for the beat frequency:

The beat frequency generated by the first overtone pf the closed pipe and the fundamental of the open pipe is 240.35Hz
Answer:
The material with higher modulus will stretch less than
The material with lower modulus
Explanation:
A material with a higher modulus is stiffer and has better resistance to deformation. The modulus is defined as the force per unit area required to produce a deformation or in other words the ratio of stress to strain.
E= stress/stain
Hooks law states that provided the elastic limit is not exceeded the extension e of a spring is directly proportional to the load or force attached
F=ke
Where k is the constant which gives the measure of the spring under tension