F = G m1*m2 / r^2 => [G] = [F]*[r]^2 /([m1]*[m2]) = N * m^2 / kg^2
That is one answer.
Also, you can use the fact that N = kg*m/s^2
[G] = kg * m / s^2 * m^2 / kg^2 = m^3 /(s^2 * kg)
To solve this problem it is necessary to apply the concepts related to the capacitance in the disks, the difference of the potential and the load in the disc.
The capacitance can be expressed in terms of the Area, the permeability constant and the diameter:

Where,
= Permeability constant
A = Cross-sectional Area
d = Diameter
Potential difference between the two disks,
V = Ed
Where,
E = Electric field
d = diameter
Q = Charge on the disk equal to 
Through the value found and the expression given for capacitance and potential, we can define the electric charge as





Re-arranging the equation to find the diameter of the disks, the equation will be:

Replacing,


Therefore the diameter of the disks is 0.03m
Avogadro's number: 6.02 x 10^23 atoms is present in 1mol of a solid (i.e. 22, 400 cm3)
Hence, in 1 cm3, 6.02 x 10^23 /22400 atoms is present = 2 x 10 ^ 19 atoms.
Answer:
16250 kgm/s due south
Explanation:
Applying,
M = mv................. Equation 1
Where M = momentum, m = mass, v = velocity.
From the car,
Given: m = 1000 kg, v = 6.5 m/s
Substitute these values into equation 1
M = 1000(6.5)
M = 6500 kgm/s
For the truck,
Given: m = 3500 kg, v = 6.5 m/s
Substitute these values into equation 1
M' = 3500(6.5)
M' = 22750 kgm/s.
Assuming South to be negative direction,
From the question,
Total momentum of the two vehicles = (6500-22750)
Total momentum of the two vehicles = -16250 kgm/s
Hence the total momentum of the two vehicles is 16250 kgm/s due south
Answer:
wen you stick to mangnetits togater
Explanation: