1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
3 years ago
12

Which of the following statements best describes the energy involved in archery

Physics
1 answer:
enyata [817]3 years ago
4 0

Answer:

Most probably the answer is D.

Hope this helps you!

Bye!

You might be interested in
The ratio of Na to O is 2:1. What is the chemical formula for this ionic compound? NaO NaO2 Na2O Na2O2
zlopas [31]

its C because i just anwserd it & it was right

3 0
4 years ago
Read 2 more answers
Identify each picture as either an inelastic collision or elastic collision
Ivan

Answer:

<u>Inelastic collision:</u>

A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.

<u>Characteristics of an inelastic collision:</u>

  • <em>the momentum of the system is conserved</em>
  • <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>

<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>

<u>Elastic </u><u>collision</u><u>:</u>

A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.

<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>

  • <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
  • <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>

In everyday life, no collision is perfectly elastic.

__________________

ANSWER:

<u>Given examples:</u>

  • Two cars colliding with each other form an example of inelastic collision.

<u>Reason:</u>

<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>

  • A ball bouncing after colliding with a surface is an example of elastic collision

<u>Reason:</u>

<em>(a very less amount of kinetic energy is lost)</em>

7 0
2 years ago
qué le sucede a la intensidad de la luz de cada bombillo en un circuito en serie si agregas más bombillos al circuito?
aalyn [17]
La intensidad de la luz se baja con cada bombillo que agregas
7 0
3 years ago
What’s the units of specific heat
DiKsa [7]
Hello Esmeralda

Specific heat is measured in Joules per g times degree Celsius.


I hope this helps!
6 0
3 years ago
Let the masses of blocks A and B be 4.50 kg and 2.00 kg , respectively, the moment of inertia of the wheel about its axis be 0.4
Free_Kalibri [48]

Answer:

Accelerations of both the sides is 0.6125 m/s^{2}, A moves downwards whereas B moves upwards.

\alpha=6.125 rad/s^{2}

Tension on side A = 4.5 × g= 44.1 m/s^{2}

Tension on side B= 2.0 × g=  19.6 m/s^{2}

Explanation:

As both, the blocks A and B are attached due to the constraint they can only possess a single acceleration a.

Observe the figure attached, let the tension with Block A be T_{2} and the tension attached with Block B be T_{1} .

Tensions will be only be due to the weight of the blocks as no other force is present.

T_{2} = 4.5 × g= 44.1 m/s^{2}

T_{1} = 2.0 × g=  19.6 m/s^{2}

Now, lets make a torque equation about the center of the wheel and find the alpha

T_{2}×R- T_{1}×R= MI( Moment of Inertia of Wheel)× Alpha

where, R= Radius of the wheel=0.100m  and

           Alpha(\alpha)= Angular acceleration of the wheel

MI of the wheel= 0.400 kg/m^{2}

(44.1-19.6)R=0.400\alpha

\alpha = \frac{24.5 * 0.100}{0.400}

\alpha=6.125 rad/s^{2}

Acceleration = R ×\alpha

                    = 0.1 * 6.125

                    =0.6125 m/s^{2}

Accelerations of both the sides is 0.6125 m/s^{2}, A moves downwards whereas B moves upwards.

7 0
4 years ago
Other questions:
  • What is produced when calcium reacts with fluorine in a synthesis reaction
    10·2 answers
  • How does rhyolite form?
    11·2 answers
  • What is the formula of two vectors which are mutually perpendicular? ​
    15·1 answer
  • In terms of the variables in the problem, determine the time, t, after the launch it takes the balloon to reach the target. Your
    6·1 answer
  • Oil, natural gas, nuclear, and coal are all examples of _______________
    9·1 answer
  • A 675 kg car moving at 15.7 m/s hits from behind another car moving at 9.6 m/s in the same direction. If the second car has a ma
    15·1 answer
  • A pile driver of mass 5 tonnes falls from a height of 10m onto a pile of mass 8 tonnes There is no rebound on impact as the pile
    9·1 answer
  • What is the difference between muscular strength and muscular endurance
    8·2 answers
  • Consider these two characteristics.
    10·2 answers
  • Three forces acting at a point keep it in equilibrium . If the angle between two of the forces , 3 N and 3 Nis 120°, then the th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!