1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goryan [66]
3 years ago
10

2. What is the slope of the line that passes through the points C(-2, 4) and D(1, -1)

Mathematics
2 answers:
atroni [7]3 years ago
8 0

Answer:

m=\frac{-5}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Slope Formula: m=\frac{y_2-y_1}{x_2-x_1}

Step-by-step explanation:

<u>Step 1: Define</u>

Point C(-2, 4)

Point D(1, -1)

<u>Step 2: Find slope </u><em><u>m</u></em>

Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>

  1. Substitute [SF]:                    m=\frac{-1-4}{1+2}
  2. Subtract/Add:                      m=\frac{-5}{3}
DaniilM [7]3 years ago
7 0
ANSWER:

–5/3x

EXPLANATION:

In order to get the answer, you would first need to turn those two points into an equation. The equation would be : y=-5/3x+2/3. Remember that the mx always contains the slope.

You might be interested in
Define the double factorial of n, denoted n!!, as follows:n!!={1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n} if n is odd{2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n} if n is evenand (
tekilochka [14]

Answer:

Radius of convergence of power series is \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{1}{108}

Step-by-step explanation:

Given that:

n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n        n is odd

n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n       n is even

(-1)!! = 0!! = 1

We have to find the radius of convergence of power series:

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

Power series centered at x = a is:

\sum_{n=1}^{\infty}c_{n}(x-a)^{n}

\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\

a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]

Applying the ratio test:

\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}

\frac{a_{n}}{a_{n+1}}=\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

Applying n → ∞

\lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}= \lim_{n \to \infty}\frac{(n+10)^{3}(4n+7)(4n+5)}{32(n+1)(3n+4)(3n+5)(3n+6)+(2n+2)}

The numerator as well denominator of \frac{a_{n}}{a_{n+1}} are polynomials of fifth degree with leading coefficients:

(1^{3})(4)(4)=16\\(32)(1)(3)(3)(3)(2)=1728\\ \lim_{n \to \infty}\frac{a_{n}}{a_{n+1}}=\frac{16}{1728}=\frac{1}{108}

4 0
3 years ago
0 = 5x2 - 2x + 6<br> Solve each of the quadratic equations.
Verizon [17]

Answer:

x=8

Step-by-step explanation:

solve the rational equation by combining expressions and isolating the variable x

8 0
3 years ago
Convert 5.100 × 10-3 to ordinary notation.<br> a.0.0005100<br> b.0.005100<br> c.510.0<br> d.5100
kondor19780726 [428]
5.100 x 10⁻³ = 5.100 x 0.001
                    = 0.005100      (shift the decimal point for 5 by 3 units left)

Alternatively, because 10⁻³ = 1/1000, therefore
5.100 x 10⁻³ = 5.1/1000

           0.0051
         ---------------
1000 | 5.100
           5000
           -------------
              1000
              1000
            
This yields the same result.

Answer: b. 0.005100
4 0
3 years ago
Guerby ran 10 miles in 2 hrs, how many miles did he run in 1hr?
Strike441 [17]

Answer:

5 not including rests and what speed.

Step-by-step explanation:

plz mark me brainlyiist :)

8 0
3 years ago
Root 16 multiplied by root 16
Orlov [11]

Answer:

\sqrt{16 } \times  \sqrt{16}  \\  \sqrt{4}  \times  \sqrt{4}  \\  \sqrt{16}

Step-by-step explanation:

please mark me brainliest

4 0
2 years ago
Read 2 more answers
Other questions:
  • 14×(2+4) distributive property
    13·2 answers
  • Which of the following options is a counterexample that proves the given conditional statement false?
    9·2 answers
  • If f (x) = 2x + 1, then, f (3)
    13·2 answers
  • Packaging By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting fl
    8·1 answer
  • Jeremy's score was 1.75 standard deviations above the mean. which kf thr following is closest to his percentile rank
    6·1 answer
  • The polynomial f(x) is written in factored form:
    10·1 answer
  • Q2 - With decimals
    14·1 answer
  • (2/3) × (2/3) × (2/3)​
    7·1 answer
  • What is 11.625 rounded to the nearest whole number
    13·1 answer
  • Arrange the functions in ascending order, starting with the function that eventually has the least value and ending with the fun
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!