The branched structure isomer will require less energy to melt than the straight chain isomer
explanation
Branched structure isomer has weak intermolecular forces of attraction as compared to straight chain isomers. In addition the branched isomer has a low boiling point as compared to straight chain isomers. Since boiling require the of the intermolecular forces tend to have lower boiling point than straight chain
<span>A chemist adds 155.0ml of a 4.10 X 10^-5 mmol/L of a zinc oxalate (ZnC2O4)solution to a reaction flask. Calculate the mass in micrograms of zinc oxalate the chemist has added to the flask.
1mmol = 10^-3 mol
Therefore 4.10*10^-5mmol = 4.10*10^-8mol
molar mass ZnC2O4 = 65.39+(2*12.011)+(4*15.99) = 153.372g/mol
You have 4.10*10^-8 mol/litre =153.372 * 4.10*10^-8 = 6.29*10^-6 grams / litre (* see below)
But you have 155ml. Mass of ZnC2O4 = 155/1000*6.29*10^-6 g
Mass is = 9.75*10^-7 grams
1µg = 10^-6 g
You then have 9.75*10^-7/10^-6 = 0.975µg ZnC2O4
(*see below) at this point you could have said:
1µg = 10^-6 g therefore you have a solution of 6.29µg per litre,
155ml = 6.29*155/1000 = 0.975µg ZnC2O4</span>
Answer:
The answer is d. water molecules near the surface produce more buoyant force than water molecules within the liquid
Explanation: Surface tension is defined as the attraction on the water of like particles to one another. Water molecules on a surface undergoes cohesion or the sticking together of one molecule to another of the same material.