The force applied to the cannonball and cannon is equal. The explosion inside the cannon will generate a pressure which will turn into a force on both cannonball and cannon. The cannon being heavier and fixed to the ground will move a bit, but the cannonball will be thrown away, fired.
The increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.
<h3>What is gravitational potential energy?</h3>
The energy that an item has due to its location in a gravitational field is known as gravitational potential energy.
The potential energy increases by 3773 J
PE₂-PE₁=mg(h₂-h₁)
3773 J = 35.0 × 9.81 × (h₂-h₁)
(h₂-h₁) = 10.98
Case 2 ;
ΔPE =?
ΔPE=mg(h₂-h₁)
ΔPE=56.0 × 9.81 ×10.98
ΔPE=6031.97 J.
Hence, the increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.
To learn more about the gravitational potential energy, refer;
brainly.com/question/3884855#SPJ1
#SPJ1
Answer:
563.86 N
Explanation:
We know the buoyant force F = weight of air displaced by the balloon.
F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m
So, F = ρgV = ρg4πr³/3
substituting the values of the variables into the equation, we have
F = 1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3
= 1691.58 N/3
= 563.86 N
The output waveforms after passing through the transformer actually depend on the type of transformer used. It could either be a step-up transformer (steps voltage up), or a step-down transformer (steps voltage down). Both transformers have an output voltage in a form of a sine wave.
Electrons that are further away from the nucleus have more energy. As they enter an "excited" state, they jump up orbits.