1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr [31]
2 years ago
9

When will I be happy again​

Mathematics
2 answers:
DerKrebs [107]2 years ago
4 0

Answer:

never

Step-by-step explanation:

sorry but never I'm just kidding get a girl friend and you will be good

ss7ja [257]2 years ago
3 0

Answer:

Oh mna. I hope you will be happy soon man.

Step-by-step explanation:

You might be interested in
Kindly solve ½=4/?, What's going to be the answer? Thank you
Luda [366]

Answer:

8

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Find the line through (3, 1, −2) that intersects and is perpendicular to the line x = −1 + t, y = −2 + t, z = −1 + t. (HINT: If
mel-nik [20]

Answer:

( xo , yo , zo ) = ( 1 , 0 , 1 )

Step-by-step explanation:

Given:-

- A line passing through point (3, 1, −2) intersects and is perpendicular to line with coordinates:

                  x = −1 + t, y = −2 + t, z = −1 + t   .... t = arbitrary parameter.

Find:-

The coordinates for point of intersection.

Solution:-

- The line that passes through point (3, 1, −2) = ( a, b , c ) and an a arbitrary point on the given line have the following direction vector d2 :

                 d2 = ( x2 , y2 , z2 )

                 x2 = a - ( x ) = 3 - ( -1 + t ) = 4 - t

                 y2 = b - ( y ) = 1 - ( -2 + t ) = 3 - t

                 z2 = c - ( z )  = -2 - ( -1 + t ) = -1 - t

                d2 = (  4 - t , 3 - t , -1 - t )

- The direction vector d1 of the given line is:

                 d1 = ( x1 , y1 , z1 )

                 x1 = 1

                 y1 = 1

                 z1 = 1

                 d1 = ( 1 , 1 , 1 )

- The dot product of two orthogonal vectors is always equal to zero:

                 d1.d2 = 0

                 (  4 - t , 3 - t , -1 - t ) . ( 1 , 1 , 1 ) = 0

- Solve for parameter (t):

                 (4 - t) + (3 - t) + (-1 - t) = 0

                  6 -3t = 0

                  t = 2  

- The coordinates of the point of intersections can be evaluated by substituting the value of "t" into the given equation of line:

                 xo ( t = 2) = - 1 + 2 = 1

                 yo ( t = 2) = - 2 + 2 = 0

                 zo ( t = 2) = - 1 + 2 = 1

- The coordinates are:

                 ( xo , yo , zo ) = ( 1 , 0 , 1 )

8 0
3 years ago
Plz I need help with the last 2 and plz simplify then
GalinKa [24]

Answer:

c) (8^6) / 8 = 32768

d) (7^8) / (7^6) = 49

Step-by-step explanation:

8 0
2 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
7b^2-b+3b+6-3b^2+5+2b^2+7b
slava [35]

6b^2 + 9b + 11 is that in simplified form.  I hope that it is what you were looking for :)

4 0
3 years ago
Other questions:
  • Moussa delivered 3/8 of newspaper on his route in the 1st hour and 4/5 of the rest in the second hour. What fraction of the news
    8·1 answer
  • A cable installer charges $42.50 per hour plus a $45.00 service charge your father firms hires him to hook up his company find t
    10·1 answer
  • The lower half of a square pyramid is made of granite and the top half is made of limestone. Explain how you could find the surf
    12·1 answer
  • Please help Will mark brainliest Algebra
    13·1 answer
  • What is the answer for -5(3x-9)=2(x-63)-33?
    10·1 answer
  • 3/4 * 2 =<br><br> Answer is 1 1/2 correct?
    10·2 answers
  • Bleacher seating for a concert on the fairgrounds consists of 6 sections. Each section seats 144 people. If 715 people attend th
    6·1 answer
  • Can someone please help me with math.
    13·1 answer
  • What is the value of x?
    13·1 answer
  • 1<br> Choose all the variable terms in the expression. 12+15x-16-4x-10x
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!