Sodium ions and sulfate ions shall be present in the solution.
Answer:
The correct option is B
Explanation:
The number of valence electron(s) increases across the period and thus influences the direction of periodic trend of electronegativity, electron affinity and ionization energy across the period. Thus, making option B the answer.
It should be noted that option A is wrong because elements in the same period generally have the same number of electron shells and thus the distance of this shells from the nucleus remains the same throughout the same period and thus option C is also wrong. Option D is wrong because the periodic trends have to do with chemical reactions which actually involves electrons and not protons.
Answer:
4.504g of acetic acid
Explanation:
The acetic acid in reaction with NaOH produce acetate ion, thus:
CH₃COOH + NaOH → CH₃COO⁻ + H₂O + Na⁺
<em>That means the moles of acetate buffer comes, in the first, from the acetic acid</em>
As you need 500mL (0,500L) of a 0.150M acetate buffer, moles are:
0.500L × (0.150mol / 1L) = <em>0.075 moles of acetate</em>. That is:
0.075mol = [CH₃COO⁻] + [CH₃COOH]
Thus, grams of acetic acid you need to prepare the buffer are:
0.075 moles acetic acid × (60.05g / 1mol) = <em>4.504g of acetic acid</em>
Answer:
All of the planets are round because of gravity. When our Solar System was forming, gravity gathered billions of pieces of gas and dust into clumps which grew larger and larger to become the planets. The force of the collision of these pieces caused the newly forming planets to become hot and molten. The force of gravity, pulled this molten material inwards towards the planet's center into the shape of a sphere. Later, when the planets cooled, they stayed spherical. Planets are not perfectly spherical because they also spin. The spinning force acts against gravity and causes many planets to bulge out more around their equators.
Explanation: