Answer:
Step-by-step explanation:
Given data
Total units = 250
Current occupants = 223
Rent per unit = 892 slips of Gold-Pressed latinum
Current rent = 892 x 223 =198,916 slips of Gold-Pressed latinum
After increase in the rent, then the rent function becomes
Let us conside 'y' is increased in amount of rent
Then occupants left will be [223 - y]
Rent = [892 + 2y][223 - y] = R[y]
To maximize rent =

Since 'y' comes in negative, the owner must decrease his rent to maximixe profit.
Since there are only 250 units available;
![y=-250+223=-27\\\\maximum \,profit =[892+2(-27)][223+27]\\=838 * 250\\=838\,for\,250\,units](https://tex.z-dn.net/?f=y%3D-250%2B223%3D-27%5C%5C%5C%5Cmaximum%20%5C%2Cprofit%20%3D%5B892%2B2%28-27%29%5D%5B223%2B27%5D%5C%5C%3D838%20%2A%20250%5C%5C%3D838%5C%2Cfor%5C%2C250%5C%2Cunits)
Optimal rent - 838 slips of Gold-Pressed latinum
Yes because if you divide 4 by 67 you get about 0.0597 and if you divide 5 by 777 then you get about 0.0064 and 0.0597 is greater than 0.0064
Step-by-step explanation:
If the zeros are 5 and 9, then the equation will have the form:
y = a (x–5) (x–9)
We know the point (0, 90) is on the curve, so we can use this to find the coefficient a:
90 = a (0–5) (0–9)
90 = 45a
a = 2
y = 2 (x – 5) (x – 9)
A line segment from a vertex to the midpoint of the opposite side is a "median". A median divides the area of the triangle in half, as it divides the base in half without changing the altitude.
AAMC is half AABC. AADC is half AAMC, so is 1/4 of AABC. (By the formula for area of a triangle.)
ABMC is half AABC. ABMD is half ABMC, so is 1/4 of AABC. (By the formula for area of a triangle.)
Then, AADC = 1/4 AABC = ABMC, so AADC = ABMC by the transitive property of equality.