1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
2 years ago
6

PLEASE HELP ASAP

Physics
1 answer:
alina1380 [7]2 years ago
8 0

Answer:

We mentioned in the study section of Lecture 2 that hydrogen and oxygen combine in the ratio of 1 to 8, but that this is not enough information for leading to the conclusion that two hydrogen atoms combine with one of oxygen to form a water molecule. A key idea is attributed to Avagadro who said that equal volumes of gas (at the same temperature and pressure) contain equal numbers of constituent atoms or molecules. Experiments show that two liters of hydrogen gas will combine with one liter of oxygen gas to form two liters of water vapor. Each hydrogen molecule in hydrogen gas consists of two hydrogen atoms bonded together. Likewise, two oxygen atoms bind to make a oxygen molecule.

A "model" of a physical process is used to represent what one actually observes, even though this is an "ideal" model and not expected to be correct in all respects. However, it is a good enough model to explain many of the properties of gases with sufficient accuracy.

The motion of gas particles can be used to explain the pressure exerted and the temperature of a gas. The pressure on a surface is due to the force on that surface divided by its area. The force comes about from the multiple impacts of individual gas particles. Temperature, on the other hand, is DEFINED in terms of the average kinetic energy assocated with the motion of the gas particles. The greater the kinetic energy, the greater the temperature. See the apparatus shown in Figure 7.6 of the text which gives a simple way of measuring the distributions of speeds of atomic particles.

To visualize how gas particles colliding with a container create pressure, see Website II.

Gas particles move in all possible directions with differing speeds. The Kinetic Energy (KE) of a gas particle is equal to 1/2 its mass times its speeds squared. That is KE = 1/2 M x V2 , where M is the mass of the gas particle and V is its speed. The gas particles have a range of speeds, just like cars on a road, but it is the average of the speed squared times the mass, or the average kinetic energy which characterizes the temperature of a gas.

High temperature is associated with high kinetic energies and low temperatures are associated with low kinetic energies. However, keep in mind that the kinetic energy, and in this case the temperature, is proportional to the mass times the speed squared. So heavy particles moving more slowly will have the same kinetic energy as light particles moving more rapidly. Also, because the kinetic energy varies as the square of the speed, if two particles have the same mass, but one moves twice as fast as the other, it will have four times the kinetic energy (or temperature).

If temperature is associated with kinetic energy of a gas, one could ask at this point what controls the temperature of solids and liquids. It turns out that it is the kinetic energy of the constituent atoms and molecules that characterize the temperature of liquids and solids as well. We show in class a transparency picturing a solid with its atoms rigidly connected to each other. We will discuss more about liquids and solids in the next lecture, based on chapter 8. However, for now, let's keep in mind that the atoms or molecules in a solid, although bound to its neighbors in a rigid structure, can oscillate back and forth, and it is this motion that characterizes the temperature of a solid (or in a similar manner, of a liquid as well). As before, rapid oscillations mean high temperatures, and slower oscillations are lower temperatures.

4 - The Three Temperature Scales

There are three temperature scales. In the United States, we commonly use the Farenheit scale while in most other nations, the Celsius or Centigrade scale is used. Figure 7.10 shows these two scales side by side. Water boils at 212 degrees Farenheit or 100 degrees Centigrade. Water freezes at 32 degrees Farenheit or zero degrees Centigrade. However, the most important temperature scale for scientific calculations is the absolute temperature scale, or the Kelvin scale. Zero degrees Kelvin is the coldest possible temperature: it can be physically interpreted as the situation where the atoms or molecules have zero kinetic energy...so this is a very natural temperature scale. Zero degrees Kelvin is also -273 degrees Centigrade. Water freezes at +273 degrees Kelvin and zero degrees Centigrate. Hence, a difference of one degree is the same on the Centigrade and Kelvin scales, but the zero points are different.

R.S. Panvini

9/2/2002Explanation:

You might be interested in
Solar panels convert light energy from sunlight into electrical energy. What material is most likely used in solar panels, and w
klemol [59]

Answer:

A metalloid is used because it is a semiconductor and can become more conductive when more light shines on it

Explanation:

The material used in a solar panel is a metalloid. It can often become conductive when more light shines on it.

Metalloids have properties that straddles between those of metals and non-metals.

In essence, they can be conductive or not under certain conditions.

The most important property they exhibit is that they can become more conductive when more light shines on them. This way more electrons are produced.

3 0
3 years ago
Read 2 more answers
When a cannon fires a cannonball, the cannon will recoil backward because the:
gulaghasi [49]

C) total linear momentum of the ball and cannon is conserved.

Basically it happens that in the beginning before there is a momentum acting on the two bodies, these are a unique system. Here the total momentum of the System is 0. However, when the positive momentum of the cannonball is added, the system will be immediately affected by a negative momentum which will pull back the cannon. Could this be extrapolated as a condition of Newton's third law.

4 0
2 years ago
Sam is walking through the park. He hears a police car siren moving on the street coming toward him. What happens to the siren s
xeze [42]
The sound gets louder as it gets closer and when it passes is gets softer
7 0
3 years ago
Read 2 more answers
Science and Technology are interdependent. Advances in one lead to advances in the other. Give an example of this phenomenon
Pepsi [2]
If more microscopic technology is invented, then more things in the world can be discovered. Likewise, if a new element is discovered, then people can use it in their technology.
7 0
2 years ago
Which choice most accurately defines resistance and voltage of a circuit?
devlian [24]

Answer:

c

Explanation:

did the test :)

7 0
2 years ago
Other questions:
  • The game was played by swinging the big mallet down hard enough to cause the bell to ring. If it took a 44 newton force to ring
    6·1 answer
  • Where are the longest continuous mountain ranges on Earth located?
    10·1 answer
  • The world record for the 100.0 meter dash is 9.580 seconds. Find the speed of the runner in miles per hour.
    5·1 answer
  • As a skateboarder moves downhill, some of the energy of the skateboarder is
    9·2 answers
  • What do you mean by acceleration due to gravity? ​
    6·1 answer
  • Which Period 2 element would you expect to have the highest electrical and
    7·1 answer
  • The normal movement of water across this membrane is from high to low ____________ concentration.
    7·1 answer
  • Which answer best describes the concept of metabolism?
    11·2 answers
  • Assuming constant velocities, if a fastball pitch is thrown and travels at 40 m/s toward home plate, 18 m away, and the head of
    7·1 answer
  • Work done can be describe as?​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!