1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
2 years ago
6

PLEASE HELP ASAP

Physics
1 answer:
alina1380 [7]2 years ago
8 0

Answer:

We mentioned in the study section of Lecture 2 that hydrogen and oxygen combine in the ratio of 1 to 8, but that this is not enough information for leading to the conclusion that two hydrogen atoms combine with one of oxygen to form a water molecule. A key idea is attributed to Avagadro who said that equal volumes of gas (at the same temperature and pressure) contain equal numbers of constituent atoms or molecules. Experiments show that two liters of hydrogen gas will combine with one liter of oxygen gas to form two liters of water vapor. Each hydrogen molecule in hydrogen gas consists of two hydrogen atoms bonded together. Likewise, two oxygen atoms bind to make a oxygen molecule.

A "model" of a physical process is used to represent what one actually observes, even though this is an "ideal" model and not expected to be correct in all respects. However, it is a good enough model to explain many of the properties of gases with sufficient accuracy.

The motion of gas particles can be used to explain the pressure exerted and the temperature of a gas. The pressure on a surface is due to the force on that surface divided by its area. The force comes about from the multiple impacts of individual gas particles. Temperature, on the other hand, is DEFINED in terms of the average kinetic energy assocated with the motion of the gas particles. The greater the kinetic energy, the greater the temperature. See the apparatus shown in Figure 7.6 of the text which gives a simple way of measuring the distributions of speeds of atomic particles.

To visualize how gas particles colliding with a container create pressure, see Website II.

Gas particles move in all possible directions with differing speeds. The Kinetic Energy (KE) of a gas particle is equal to 1/2 its mass times its speeds squared. That is KE = 1/2 M x V2 , where M is the mass of the gas particle and V is its speed. The gas particles have a range of speeds, just like cars on a road, but it is the average of the speed squared times the mass, or the average kinetic energy which characterizes the temperature of a gas.

High temperature is associated with high kinetic energies and low temperatures are associated with low kinetic energies. However, keep in mind that the kinetic energy, and in this case the temperature, is proportional to the mass times the speed squared. So heavy particles moving more slowly will have the same kinetic energy as light particles moving more rapidly. Also, because the kinetic energy varies as the square of the speed, if two particles have the same mass, but one moves twice as fast as the other, it will have four times the kinetic energy (or temperature).

If temperature is associated with kinetic energy of a gas, one could ask at this point what controls the temperature of solids and liquids. It turns out that it is the kinetic energy of the constituent atoms and molecules that characterize the temperature of liquids and solids as well. We show in class a transparency picturing a solid with its atoms rigidly connected to each other. We will discuss more about liquids and solids in the next lecture, based on chapter 8. However, for now, let's keep in mind that the atoms or molecules in a solid, although bound to its neighbors in a rigid structure, can oscillate back and forth, and it is this motion that characterizes the temperature of a solid (or in a similar manner, of a liquid as well). As before, rapid oscillations mean high temperatures, and slower oscillations are lower temperatures.

4 - The Three Temperature Scales

There are three temperature scales. In the United States, we commonly use the Farenheit scale while in most other nations, the Celsius or Centigrade scale is used. Figure 7.10 shows these two scales side by side. Water boils at 212 degrees Farenheit or 100 degrees Centigrade. Water freezes at 32 degrees Farenheit or zero degrees Centigrade. However, the most important temperature scale for scientific calculations is the absolute temperature scale, or the Kelvin scale. Zero degrees Kelvin is the coldest possible temperature: it can be physically interpreted as the situation where the atoms or molecules have zero kinetic energy...so this is a very natural temperature scale. Zero degrees Kelvin is also -273 degrees Centigrade. Water freezes at +273 degrees Kelvin and zero degrees Centigrate. Hence, a difference of one degree is the same on the Centigrade and Kelvin scales, but the zero points are different.

R.S. Panvini

9/2/2002Explanation:

You might be interested in
Water enters a student's house 10.0 m above the ground through a pipe with a cross section area of 1.00 x 10-4m2 at ground. Insi
dezoksy [38]

Answer:

(a). V₁ = 10m/s (velocity inside the house), V₂ = 5m/s (velocity at ground level)

(b). P₂ = 236500 Pa

Explanation:

This is quite straight-forward so let us begin by defining the terms given.

Given that;

The cross-section area inside the student's house A₁ = 0.50 0.50 x 10-4m2.

Let us make the velocity of water inside the house be V₁

such that the Volume of water entering the per second is = A₁V₁

Therefore, in 90sec:

45 L =  90 A₁V₁

V₁ = 45 * 10⁻³m³ / 90*0.5*10⁻⁴

V₁ = 10m/s            (velocity of water inside the house)

From the continuity equation we have that;

A₁V₁ = A₂V₂

0.5*10⁻⁴ * 10 = 1*10⁻⁴ V₂

V₂ = 5m/s               (velocity at ground level)

(b). We are told to calculate the water pressure in the pipeline at the ground level.

Using Bernoulli's equation;

P₁ + pgh₁ + 1/2PV₁²  (inside)      =       P₂ + pgh₂ + 1/2PV₂²   (ground level)

1.01*10⁵ + 1000*9.8*10 + 1/2*1000*(10)² = P₂ + 0 + 1/2*1000*(5)²

P₂ (pressure) = 1.01*10⁵Pa

Therefore we have;

101000 + 98000 + 50000 = P₂ + 12500

P₂ = 236500 Pa

cheers I hope this helped !!

3 0
3 years ago
There are devices to put in a light socket that control the current through a lightbulb, thereby increasing its lifetime. Which
Dmitrij [34]

Answer: B

Explanation:

Limiting the maximum current through the bulb. This will help in preserving or improving the bulb's lifetime and also this won't have an effect on the brightness of the bulb as brightness is affected by the average value. Although brightness is a factor of current, reducing the maximum current won't have any bearing on the average current the bulb is getting.

4 0
3 years ago
How do i find stretch? The problem in questioning has already given me the elastic energy and k-value, but I have no idea how to
finlep [7]

Answer:

Stretch can be obtained using the Elastic potential energy formula.

The expression to find the stretch (x) is x=\sqrt{\frac{2\times EPE}{k}}

Explanation:

Given:

Elastic potential energy (EPE) of the spring mass system and the spring constant (k) are given.

To find: Elongation in the spring (x).

We can find the elongation or stretch of the spring using the formula for Elastic Potential Energy (EPE).

The formula to find EPE is given as:

EPE=\frac{1}{2}kx^2

Rewriting the above expression in terms of 'x', we get:

x=\sqrt{\frac{2\times EPE}{k}}

Example:

If EPE = 100 J and spring constant, k = 2 N/m.

Elongation or stretch is given as:

x=\sqrt{\frac{2\times EPE}{k}}\\\\x=\sqrt{\frac{2\times 100}{2}}\\\\x=\sqrt{100}=10\ m

Therefore, the stretch in the spring is 10 m.

So, stretch in the spring can be calculated using the formula for Elastic Potential Energy.

6 0
3 years ago
A proton is released such that its initical velocity is from right to left across this page. THe proton's path, however, is defl
eduard

Answer:

the magnetic field is leaving the sheet

Explanation:

The magnetic force is given by the expression

        F = q v x B

where bold letters indicate vectors, the modulus of this expression is

       F = q v B sin θ

the direction of the force is given by the right hand rule, for a positive charge

the thumb indicates the direction of the speed, in this case from right to left

the palm the direction of the force, in our case upwards

the fingers extended the direction of the magnetic field, this case after fixing the other two components it points out of the blade

In short the magnetic field is leaving the sheet

7 0
3 years ago
Help! Will Mark Brainliest!
boyakko [2]

Answer:

D 5m/s

Explanation:

6 0
3 years ago
Other questions:
  • Determine your Maximum Heart Rate (MHR) by subtracting your age from 220.
    15·1 answer
  • An ocean liner is cruising at 10 meters/second and is about to approach a stationary ferryboat. A parcel is released from the oc
    9·1 answer
  • Jack has two boxes: one is 148g and one is 78g. if jack pushes both boxes with the same amount of force which will accelerate fa
    5·1 answer
  • The deepest point of the pacific ocean is 11,033 m, in the mariana trench. what is the gauge pressure in the water at that point
    6·1 answer
  • A long, straight, horizontal wire carries a left-to-right current of 20 A. If the wire is placed in a uniform magnetic field of
    13·1 answer
  • Put these in order from least to greatest universe, Earth, Milky Way galaxy, solar system
    9·1 answer
  • A black hole can be considered a star that has...
    8·1 answer
  • Volume of water shrinks between__​
    5·2 answers
  • Sand dunes during the Dust Bowl are an example of:
    15·1 answer
  • Oceanic crust is much denser than continental crust
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!