Given that a car is in the road, there is only movement in the x-direction. There is no movement in the y-direction.
Looking at the y-direction for the normal force:
F = N - mg
0 = N - mg, (no movement in y-dir.)
N = mg
N = (990)(9.8)
N = 9702 newtons
The normal force exerted on the car by the road is 9702 newtons.
I think when particles are in the gas form they are most likely to cause a chemical reaction considering the fact that gas particles aren't very controllable and it would make sense that they would react unexpectedly
<span>A particle released during the fission of uranium-235 is a "Neutron"</span>
Answer:
1.25 m
Explanation:
From the question given above, the following data were obtained:
Force ratio = 2.5
Distance of load from the fulcrum = 0.5 m
Distance of effort =.?
The distance of the effort from the fulcrum can be obtained as illustrated below:
Force ratio = Distance of effort / Distance of load
2.5 = Distance of effort / 0.5
Cross multiply
Distance of effort = 2.5 × 0.5
Distance of effort = 1.25 m
Therefore, the distance of the effort from the fulcrum is 1.25 m
When a swimmer pushes through water to swim they are propelled forward because of the water resistance against the hand and feet. It's A. The water doesn't automatically push the swimmer forward. It releases a reaction after the swimmer pushes through the water.