1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
3 years ago
9

Find the volume of the solid. 4km, 8km, and 12km

Mathematics
1 answer:
ahrayia [7]3 years ago
8 0
Bussneshxhdbdbdbdbdhddhxhhdhdhdhdhdhdbdbdbddbbdndbdbdbdbdbdbd
You might be interested in
Find the slope please help!
Sidana [21]

Answer:

4.5 is the answer 9/2=4.5

Step-by-step explanation:

4 0
3 years ago
Solve for M <br> -3+m/ 9 = 10
sweet-ann [11.9K]

Step-by-step explanation:

-3+m/9=10

m/9=10+3

m/9=13

m=13×9

m=117

<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>n</u><u>e</u><u>e</u><u>d</u><u> </u><u>t</u><u>o</u><u> </u><u>a</u><u>s</u><u>k</u><u> </u><u>a</u><u>n</u><u>y</u><u> </u><u>question</u><u> </u><u>please</u><u> </u><u>let</u><u> </u><u>me</u><u> </u><u>know</u><u>.</u>

5 0
3 years ago
Students sold raffle tickets to raise money for a field trip. The first 20 tickets cost $4 each. To sell more tickets, they lowe
saveliy_v [14]

Answer:

88 Tickets were sold

Step-by-step explanation:

20*$4=$80

$216-$80=$136

$136/2=68

20+68=88 tickets

4 0
3 years ago
What is the sum of the interior angles of the polygon shown below?
borishaifa [10]

Answer:A quadrilateral always has a sum of 360o in total.

4 0
3 years ago
Read 2 more answers
Given the quadratic function f(x) = 4x^2 - 4x + 3, determine all possible solutions for f(x) = 0
solong [7]

Answer:

The solutions to the quadratic function are:

x=i\sqrt{\frac{1}{2}}+\frac{1}{2},\:x=-i\sqrt{\frac{1}{2}}+\frac{1}{2}

Step-by-step explanation:

Given the function

f\left(x\right)\:=\:4x^2\:-\:4x\:+\:3

Let us determine all possible solutions for f(x) = 0

0=4x^2-4x+3

switch both sides

4x^2-4x+3=0

subtract 3 from both sides

4x^2-4x+3-3=0-3

simplify

4x^2-4x=-3

Divide both sides by 4

\frac{4x^2-4x}{4}=\frac{-3}{4}

x^2-x=-\frac{3}{4}

Add (-1/2)² to both sides

x^2-x+\left(-\frac{1}{2}\right)^2=-\frac{3}{4}+\left(-\frac{1}{2}\right)^2

x^2-x+\left(-\frac{1}{2}\right)^2=-\frac{1}{2}

\left(x-\frac{1}{2}\right)^2=-\frac{1}{2}

\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}

solving

x-\frac{1}{2}=\sqrt{-\frac{1}{2}}

x-\frac{1}{2}=\sqrt{-1}\sqrt{\frac{1}{2}}                 ∵ \sqrt{-\frac{1}{2}}=\sqrt{-1}\sqrt{\frac{1}{2}}

as

\sqrt{-1}=i

so

x-\frac{1}{2}=i\sqrt{\frac{1}{2}}

Add 1/2 to both sides

x-\frac{1}{2}+\frac{1}{2}=i\sqrt{\frac{1}{2}}+\frac{1}{2}

x=i\sqrt{\frac{1}{2}}+\frac{1}{2}

also solving

x-\frac{1}{2}=-\sqrt{-\frac{1}{2}}

x-\frac{1}{2}=-i\sqrt{\frac{1}{2}}

Add 1/2 to both sides

x-\frac{1}{2}+\frac{1}{2}=-i\sqrt{\frac{1}{2}}+\frac{1}{2}

x=-i\sqrt{\frac{1}{2}}+\frac{1}{2}

Therefore, the solutions to the quadratic function are:

x=i\sqrt{\frac{1}{2}}+\frac{1}{2},\:x=-i\sqrt{\frac{1}{2}}+\frac{1}{2}

4 0
3 years ago
Other questions:
  • Use the following scenario to answer the question below:
    8·1 answer
  • A coordinate plane graph is shown. Point C is at negative 4 comma 3. Point D is at 1 comma 0. A segment connects the two points.
    8·2 answers
  • Help help help helpppp ASAP!
    10·2 answers
  • HEY PLEASE HELP I AM STRUGGLING!!
    14·1 answer
  • Pls help me with this
    5·1 answer
  • Perpendicular bisector of segment with endpoints -2,0 and 6,12.
    6·1 answer
  • A den has a circular rug. According to the tag, the rug has an area of 3.14 square meters.
    11·1 answer
  • Write a multiplication equation that represents the question: how many 3/8 are in 8?
    13·1 answer
  • PLEASE HELP AND EXPLAIN YOUR ANSWER ILL GIVE BRAINLIEST
    9·1 answer
  • A figure is located at (0, 0), (−3, −4), and (−3, 0) on a coordinate plane. What kind of 3-D shape would be created if the figur
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!