1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
3 years ago
15

Two small nonconducting spheres have a total charge of 94.0 μC . Part A

Physics
1 answer:
Leto [7]3 years ago
7 0

Answer:

Part A;

The charges are;

Q₁ = 1.32687 μC and Q₂ = 92.67313 μC

Part B

Q₁ = 95.29042 μC, Q₂ = -1.29042 μC

Explanation:

Part A

The total charge on the two nonconducting spheres = 94.0 μC

The force exerted by each on the other when placed 31 cm apart = 11.5 N

Let Q₁ = x represent the charge on one of the spheres and let Q₂ represent the charge on the other sphere

The force, 'F', exerted by a charge is given as follows;

F = k \times \dfrac{\left | Q_1  \right | \cdot \left | Q_2  \right |  }{d^2}

Where;

d = The distance between the spheres = 31 cm = 0.31 m

k = 8.9875 × 10⁹ N·m²/C²

Where F = 11.5 N

Q₁ + Q₂ = 94.0 μC

∴ Q₂ = 94.0 - Q₁ = 94.0 - x

We get;

F =11.5 =  8.9875 \times 10^9 \times \dfrac{x\times (94.0-x) \times 10^{-12}}{0.31^2}

Therefore;

94·x - x² - 122.965 = 0

x² - 94·x + 122.965

x = (94 ± √((-94)² - 4×1×122.965))/(2 × 1)

Solving gives;

x ≈ 1.32687 × 10⁻⁶ C or x = 92.67313 × 10⁻⁶ C

Therefore, the charges are;

Q₁ = 1.32687 × 10⁻⁶ C and Q₂ = 92.67313 × 10⁻⁶ C

Q₁ = 1.32687 μC and Q₂ = 92.67313 μC

Part B

For attractive force, we have;

Q₁ + Q₂ = 94 × 10⁻⁶...(1)

11.5 =  8.9875 \times 10^9 \times \dfrac{-x\times (94.0-x)}{0.31^2} =  8.9875 \times 10^9 \times \dfrac{-Q_1\times Q_2}{0.31^2}

-Q₁ × Q₂ = 11.5 × 0.31²/(8.9875 × 10⁹) = 1.2296523 × 10⁻¹⁰...(2)

∴ Q₂ = -1.2296523 × 10⁻¹⁰/(Q₁)

Q₁ + Q₂ = Q₁  - 1.2296523 × 10⁻¹⁰/(Q₁) = 94 × 10⁻⁶

Q₁² - 94 × 10⁻⁶·Q₁ - 1.2296523 × 10⁻¹⁰ = 0

∴ Q₁ = (94 × 10⁻⁶ ± √((-94 × 10⁻⁶)² - 4 × 1 × 1.2296523 × 10⁻¹⁰))/(2×1)

Q₁ = 9.529042 × 10⁵ C or -1.29042 × 10⁻⁶ C

Therefore, Q₁ = 9.529042 × 10⁵ C and Q₂ = -1.29042 × 10⁻⁶ C

Q₁ = 95.29042 μC and Q₂ = -1.29042 μC

You might be interested in
5. A person fishing from a pier observes that four wave crests pass by in 7.0 s and estimates that the distance between two succ
TiliK225 [7]

Answer:

v= 1.71 m/s

Explanation:

Given that

Distance between two successive crests = 4.0 m

 λ = 4 m

T= 7 sec

T is the time between 3 waves.

3 waves = 7 sec

1 wave = 7 /3 sec

So t= 7/3 s

We know that frequency f

f= 1/t= 3/7 Hz

Lets take speed of the wave is v

v= f λ

f=frequency

λ=wavelength

v= 3/7 x 4 = 12 /7

v= 1.71 m/s

3 0
3 years ago
Which theory best explains the present arrangement of continents oceans and landforms on earth? A the Pangaea theory B The conti
solong [7]

Plate Tectonic Theory

3 0
3 years ago
An athlete jumping vertically on a trampoline leaves the surface with a velocity of 8.5 m/s upward. what maximum height does she
Mumz [18]
<span>Her center of mass will rise 3.7 meters. First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so 8.5 m / 9.8 m/s^2 = 0.867346939 s And the distance a object under constant acceleration travels is d = 0.5 A T^2 Substituting known values, gives d = 0.5 9.8 m/s^2 (0.867346939 s)^2 d = 4.9 m/s^2 * 0.752290712 s^2 d = 3.68622449 m Rounded to 2 significant figures gives 3.7 meters. Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>
8 0
3 years ago
Suppose you have two chains available to suspend an object in the air. Let’s also say that you can arrange the suspension howeve
Liono4ka [1.6K]
<h2>your answer is going to be image 1 that one looks the most decent </h2>
5 0
3 years ago
Read 2 more answers
How would the plane strain fracture toughness of a metal be expected to change with rising temperature?
aksik [14]

Answer:

Increase

Explanation:

The plane strain fracture toughness of a metal is expected to increase with rising temperature.

4 0
3 years ago
Other questions:
  • Shawna is very knowledgeable about cars​
    9·1 answer
  • An environmental group wants to sink a ship off the coast to create an artificial reef. They find that they must get a permit fr
    9·2 answers
  • A train travels with a constant speed of 20.0m/s for 7.00s. Determine all
    8·1 answer
  • A particular car engine operates between temperatures of 440°C (inside the cylinders of the engine) and 20°C (the temperature of
    14·1 answer
  • a 25 newton force applied on an object moves it 50 meters. the angle between the force and displacement is 40.0°. what is the va
    14·1 answer
  • Many of water's emergent properties, such as its cohesion, its high specific heat, and its high heat of vaporization, result fro
    5·1 answer
  • An astronaut drops a rock from the top of a crater on the moon. When the rock is halfway down to the bottom of the crater, its s
    8·2 answers
  • Where would you feel the most motion?​
    7·1 answer
  • I need help 8th grade science test review will give brainest
    9·1 answer
  • (ASAP) would it be 125 m/s2 to calculate for her speeding up?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!