Better technology is helping us because we can see more stuff like the microscope we able to make assumptions based on what we saw.
Answer:
Yes
Explanation:
Given that the battery is the same the PD ( potential difference ) in the circuit will also be the same likewise the flow of charge in the circuit,
Hence the same amount of charge flow is delivered to any circuit.
attached below are examples
Answer:
a) ![v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s](https://tex.z-dn.net/?f=v_%7B1%7D%3D%5Cfrac%7B%2862.5-66%29ft%7D%7B%282.5-2%29s%7D%3D-7ft%2Fs)
![v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s](https://tex.z-dn.net/?f=v_%7B2%7D%3D%5Cfrac%7B%2865.94-66%29ft%7D%7B%282.1-2%29s%7D%3D-0.6ft%2Fs)
![v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s](https://tex.z-dn.net/?f=v_%7B3%7D%3D%5Cfrac%7B%2866.0084-66%29ft%7D%7B%282.01-2%29s%7D%3D0.84ft%2Fs)
![v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s](https://tex.z-dn.net/?f=v_%7B4%7D%3D%5Cfrac%7B%2866.001-66%29ft%7D%7B%282.001-2%29s%7D%3D1ft%2Fs)
b) ![v=65-32(2)=1ft/s](https://tex.z-dn.net/?f=v%3D65-32%282%29%3D1ft%2Fs)
Explanation:
From the exercise we got the ball's equation of position:
![y=65t-16t^{2}](https://tex.z-dn.net/?f=y%3D65t-16t%5E%7B2%7D)
a) To find the average velocity at the given time we need to use the following formula:
![v=\frac{y_{2}-y_{1} }{t_{2}-t_{1} }](https://tex.z-dn.net/?f=v%3D%5Cfrac%7By_%7B2%7D-y_%7B1%7D%20%20%7D%7Bt_%7B2%7D-t_%7B1%7D%20%20%7D)
Being said that, we need to find the ball's position at t=2, t=2.5, t=2.1, t=2.01, t=2.001
![y_{t=2}=65(2)-16(2)^{2} =66ft](https://tex.z-dn.net/?f=y_%7Bt%3D2%7D%3D65%282%29-16%282%29%5E%7B2%7D%20%3D66ft)
![y_{t=2.5}=65(2.5)-16(2.5)^{2} =62.5ft](https://tex.z-dn.net/?f=y_%7Bt%3D2.5%7D%3D65%282.5%29-16%282.5%29%5E%7B2%7D%20%3D62.5ft)
![v_{1}=\frac{(62.5-66)ft}{(2.5-2)s}=-7ft/s](https://tex.z-dn.net/?f=v_%7B1%7D%3D%5Cfrac%7B%2862.5-66%29ft%7D%7B%282.5-2%29s%7D%3D-7ft%2Fs)
--
![y_{t=2.1}=65(2.1)-16(2.1)^{2} =65.94ft](https://tex.z-dn.net/?f=y_%7Bt%3D2.1%7D%3D65%282.1%29-16%282.1%29%5E%7B2%7D%20%3D65.94ft)
![v_{2}=\frac{(65.94-66)ft}{(2.1-2)s}=-0.6ft/s](https://tex.z-dn.net/?f=v_%7B2%7D%3D%5Cfrac%7B%2865.94-66%29ft%7D%7B%282.1-2%29s%7D%3D-0.6ft%2Fs)
--
![y_{t=2.01}=65(2.01)-16(2.01)^{2} =66.0084ft](https://tex.z-dn.net/?f=y_%7Bt%3D2.01%7D%3D65%282.01%29-16%282.01%29%5E%7B2%7D%20%3D66.0084ft)
![v_{3}=\frac{(66.0084-66)ft}{(2.01-2)s}=0.84ft/s](https://tex.z-dn.net/?f=v_%7B3%7D%3D%5Cfrac%7B%2866.0084-66%29ft%7D%7B%282.01-2%29s%7D%3D0.84ft%2Fs)
--
![y_{t=2.001}=65(2.001)-16(2.001)^{2} =66.001ft](https://tex.z-dn.net/?f=y_%7Bt%3D2.001%7D%3D65%282.001%29-16%282.001%29%5E%7B2%7D%20%3D66.001ft)
![v_{4}=\frac{(66.001-66)ft}{(2.001-2)s}=1ft/s](https://tex.z-dn.net/?f=v_%7B4%7D%3D%5Cfrac%7B%2866.001-66%29ft%7D%7B%282.001-2%29s%7D%3D1ft%2Fs)
b) To find the instantaneous velocity we need to derivate the equation
![v=\frac{df}{dt}=65-32t](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bdf%7D%7Bdt%7D%3D65-32t)
![v=65-32(2)=1ft/s](https://tex.z-dn.net/?f=v%3D65-32%282%29%3D1ft%2Fs)
B Quartz. Will be your answer of thia