Answer:
The force pulling the roller along the ground is 128.55 N
Explanation:
A force of 200 N acting at an angle of 50° with the ground level
This force is pulled a garden roller
We need to find the force pulling the roller along the ground
The force that pulling the roller along the ground is the horizontal
component of the force acting
→ The force acting is 200 N at direction 50° with ground (horizontal)
→ The horizontal component = F cosФ
→ F = 200 N , Ф = 50
→ The horizontal component = 200 cos(50) = 128.55 N
128.55 N is the horizontal component of the force that pulling the
roller along the ground
<em>The force pulling the roller along the ground is 128.55 N</em>
I’m not going to church tomorrow or Friday I don’t want to go go back up
<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Relative to the positive horizontal axis, rope 1 makes an angle of 90 + 20 = 110 degrees, while rope 2 makes an angle of 90 - 30 = 60 degrees.
By Newton's second law,
- the net horizontal force acting on the beam is

where
are the magnitudes of the tensions in ropes 1 and 2, respectively;
- the net vertical force acting on the beam is

where
and
.
Eliminating
, we have





Solve for
.


