<span>The simplest method to do this is with the vector dot
product. Let the vector A = <9i + 5j> with magnitude √106 be the base
diagonal, and B = <5j + 3k> be the diagonal vector on the side, with
magnitude √34. Then cos θ = (A dot B) divided by the product of the magnitudes.
A dot B =30, so
cos θ = 30 / √(34 x 106)</span>
<span> = 0.4997 ==></span>
<span> θ = 49.19° is the
answer</span>
Answer:
1. 5 – x = 8 , x = -3
2. -1 = x – 2 , x = 1
3. -3x = 9 , x = -3
4. -10 = -5x , x= 2
Step-by-step explanation:
Answer:
(3 ± √23 * i) /4
Step-by-step explanation:
To solve this, we can apply the Quadratic Equation.
In an equation of form ax²+bx+c = 0, we can solve for x by applying the Quadratic Equation, or x = (-b ± √(b²-4ac))/(2a)
Matching up values, a is what's multiplied by x², b is what's multiplied by x, and c is the constant, so a = 2, b = -3, and c = 4
Plugging these values into our equation, we get
x = (-b ± √(b²-4ac))/(2a)
x = (-(-3) ± √(3²-4(2)(4)))/(2(2))
= (3 ± √(9-32))/4
= (3 ± √(-23))/4
= (3 ± √23 * i) /4
Answer:
Step-by-step explanation: