Answer:
We can assume that the decline in the population is an exponential decay.
An exponential decay can be written as:
P(t) = A*b^t
Where A is the initial population, b is the base and t is the variable, in this case, number of hours.
We know that: A = 800,000.
P(t) = 800,000*b^t
And we know that after 6 hours, the popuation was 500,000:
p(6h) = 500,000 = 800,000*b^6
then we have that:
b^6 = 500,000/800,000 = 5/8
b = (5/8)^(1/6) = 0.925
Then our equation is:
P(t) = 800,000*0.925^t
Now, the population after 24 hours will be:
P(24) = 800,000*0.925^24 = 123,166