1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
3 years ago
9

Is it possible to add an atom with 12 protons and 13 electrons explain​

Chemistry
1 answer:
Svetllana [295]3 years ago
3 0
No, it is not possible. No.To gain a stable octet configuration, it would either lose 2e- (but question shows 13 e-) or else gain 6e- (which creates a great energy difference)
You might be interested in
HELP ME ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!
Kobotan [32]

Answer:

Digestive

Explanation:

7 0
3 years ago
For the reaction A +B+ C D E, the initial reaction rate was measured for various initial concentrations of reactants. The follow
lora16 [44]

Answer:

Rate constant of the reaction is 3.3\times 10^{-3} M^{-2} s^{-1}.

Explanation:

A + B + C → D + E

Let the balanced reaction be ;

aA + bB + cC → dD + eE

Expression of rate law of the reaction will be written as:

R=k[A]^a[B]^b[C]^c

Rate(R) of the reaction in trail 1 ,when :

[A]=0.30 M,[B]=0.30 M,[C]=0.30 M

R=9.0\times 10^{-5} M/s

9.0\times 10^{-5} M/s=k[0.30 M]^a[0.30 M]^b[0.30 M]^c...[1]

Rate(R) of the reaction in trail 2 ,when :

[A]=0.30 M,[B]=0.30 M,[C]=0.90 M

R=2.7\times 10^{-4} M/s

2.7\times 10^{-4} M/s=k[0.30 M]^a[0.30 M]^b[0.90 M]^c...[2]

Rate(R) of the reaction in trail 3 ,when :

[A]=0.60 M,[B]=0.30 M,[C]=0.30 M

R=3.6\times 10^{-4} M/s

3.6\times 10^{-4} M/s=k[0.60 M]^a[0.30 M]^b[0.30 M]^c...[3]

Rate(R) of the reaction in trail 4 ,when :

[A]=0.60 M,[B]=0.60 M,[C]=0.30 M

R=3.6\times 10^{-4} M/s

3.6\times 10^{-4} M/s=k[0.60 M]^a[0.60 M]^b[0.30 M]^c...[4]

By [1] ÷ [2], we get value of c ;

c = 1

By [3] ÷ [4], we get value of b ;

b = 0

By [2] ÷ [3], we get value of a ;

a = 2

Rate law of reaction is :

R=k[A]^2[B]^0[C]^1

Rate constant of the reaction = k

9.0\times 10^{-5} M/s=k[0.30 M]^2[0.30 M]^0[0.30 M]^1

k=\frac{9.0\times 10^{-5} M/s}{[0.30 M]^2[0.30 M]^0[0.30 M]^1}

k=3.3\times 10^{-3} M^{-2} s^{-1}

7 0
3 years ago
How are mutations different? Provide examples.
Murljashka [212]

Answer:

sdoawjdiowadawoi siokdwajsiokwjDIWIAdawidjaskmdnkawdjad kadakwdkawdawhdaw

Explanation: im smart

4 0
3 years ago
Read 2 more answers
When did oxygen first appear in earth's atmosphere??
ad-work [718]
<span> the atmosphere holds about 21 per cent oxygen. Over the Earth’s 4.6 billion year history, oxygen did not appear in the atmosphere until perhaps about 2.5 billion years ago. Since then, oxygen levels have fluctuated in tandem with global geological and biological events, such as mass extinctions.</span>
7 0
3 years ago
Suppose a group of volunteers is planning to build a park near a local lake. The lake is known to contain low levels of arsenic
Kisachek [45]

Answer:

A) 10.75 is the concentration of arsenic in the sample in parts per billion .

B) 7,633.66 kg the total mass of arsenic in the lake that the company have to remove.

C) It will take 1.37 years to remove all of the arsenic from the lake.

Explanation:

A) Mass of arsenic in lake water sample = 164.5 ng

The ppb is the amount of solute (in micrograms) present in kilogram of a solvent. It is also known as parts-per million.

To calculate the ppm of oxygen in sea water, we use the equation:

\text{ppb}=\frac{\text{Mass of solute}}{\text{Mass of solution}}\times 10^9

Both the masses are in grams.

We are given:

Mass of arsenic = 164.5 ng = 164.5\times 10^{-9} g

1 ng=10^{-9} g

Volume of the sample = V = 15.3 cm^3

Density of the lake water sample ,d= 1.00 g/cm^3

Mass of sample =  M = d\times V=1.0 g/cm^3\times 15.3 cm^3=15.3 g

ppb=\frac{164.5\times 10^{-9} g}{15.3 g}\times 10^9=10.75

10.75 is the concentration of arsenic in the sample in parts per billion.

B)

Mass of arsenic in 1 cm^3  of lake water = \frac{164.5\times 10^{-9} g}{15.3}=1.075\times 10^{-8} g

Mass of arsenic in 0.710 km^3 lake water be m.

1 km^3=10^{15} cm^3

Mass of arsenic in 0.710\times 10^{15} cm^3 lake water :

m=0.710\times 10^{15}\times 1.075\times 10^{-8} g=7,633,660.130 g

1 g = 0.001 kg

7,633,660.130 g = 7,633,660.130 × 0.001 kg=7,633.660130 kg ≈ 7,633.66 kg

7,633.66 kg the total mass of arsenic in the lake that the company have to remove.

C)

Company claims that it takes 2.74 days to remove 41.90 kilogram of arsenic from lake water.

Days required to remove 1 kilogram of arsenic from the lake water :

\frac{2.74}{41.90} days

Then days required to remove 7,633.66 kg of arsenic from the lake water :

=7,633.66\times \frac{2.74}{41.90} days=499.19 days

1 year = 365 days

499.19 days = \frac{499.19}{365} years = 1.367 years\approx 1.37 years

It will take 1.37 years to remove all of the arsenic from the lake.

3 0
3 years ago
Other questions:
  • Match the atoms which might substitute for one another. Match the items in the left column to the items in the right column.
    8·2 answers
  • Rfggxchhgfdxvnjgdzvbhdazcbhds
    15·1 answer
  • Which of the following best explains why a structural formula of a chemical compound is more useful than a molecular formula?
    13·2 answers
  • Chlorine is used to disinfect swimming pools. The accepted concentration for this purpose is 1 ppm chlorine, or 1 g of chlorine
    9·1 answer
  • Name the compound CO2 using the Stock system.
    8·2 answers
  • Elemento quimico con inicial "S"​
    10·1 answer
  • What is true about the inertia of two cars, Car A of mass 1,500 kilograms and Car B of mass 2,000 kilograms?
    15·1 answer
  • How are metals and nonmetals similar
    7·1 answer
  • 50 Two chemicals are mixed and sold in a plastic bag The bag begins to inflate and becomes hot to the touch. what evidence suppo
    11·1 answer
  • 1a. Review What holds the hydrogen and oxygen<br> atoms together in a water molecule?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!