1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
3 years ago
5

How is NASA a catalyst to make the crew work better?

Physics
1 answer:
spin [16.1K]3 years ago
7 0

Answer:

with teamwork

Explanation:

you need to use team work so the right answer is C

You might be interested in
A large rock of mass me materializes stationary at the orbit of Mercury and falls into the sun. Itf the Sun has a mass ms and ra
son4ous [18]

Answer:

The answer is v = \sqrt{2G\frac{M_s}{R^2}(R-r_s)}.

Explanation:

From the law of gravity,

F = G \frac{Mm}{r^2}

considering F as a conservative force, F = - \nabla U,

the general expression for gravitational potential energy is

U = -G \frac{Mm}{r},

where G is the gravitational constant, M and m are the mass of the attracting bodies, and r is the distance between their centers. The negative sign is because the force approaches zero for large distances, and we choose the zero of gravitational potential energy at an infinite distance away.

However, as the mass of the Sun is much greater than the mass of the rock, the gravitational acceleration is defined as

g = -G \frac{M}{r^2},

(the negative sign indicates that the force is an attractive force), and the potential energy between the rock and the Sun is

U = g M_e R,

which is actually the total energy of the system, because the rock materializes stationary at this point (there is no radial kinetic energy).

When the rock hits the surface of the Sun, almost all potential energy is converted to kinetic energy, but not all because the Sun is not a puntual mass. So the potential energy converted to kinetic energy is

U_p = g M_e(R- r_s),

then, the kinetik energy when the rock hits the surface is

U_k =\frac{1}{2}M_e v^2 = g M_e(R- r_s),

so

v = \sqrt{2g(R-r_s)}

where g is the gravitational acceleration generated by the Sun at R,

g = G \frac{M_s}{R^2}.

8 0
3 years ago
A car starts to move from rest and covers a distance of 360m in one minute. Calculate the acceleration of the car.
Romashka-Z-Leto [24]
<h2>The acceleration of car is 0.2 ms⁻²</h2>

Explanation:

When the car moves , the distance covered is calculated by the relation

S = u t + \frac{1}{2} a t²

In this question u = 0 , because car was at rest initially

Thus S =  \frac{1}{2} a t²

here S is displacement and a is the acceleration of car

Therefore  360 =  \frac{1}{2} a ( 60 )²

Because time taken is one minute or 60 seconds

Therefore a = \frac{360x2}{3600}

or a = 0.2 m s⁻²

4 0
3 years ago
A solid nonconducting sphere of radius R has a charge Q uniformly distributed throughout its volume. A Gaussian surface of radiu
anyanavicka [17]

Answer:

1. E x 4πr² = ( Q x r³) / ( R³ x ε₀ )

Explanation:

According to the problem, Q is the charge on the non conducting sphere of radius R. Let ρ be the volume charge density of the non conducting sphere.

As shown in the figure, let r be the radius of the sphere inside the bigger non conducting sphere. Hence, the charge on the sphere of radius r is :

Q₁ = ∫ ρ dV

Here dV is the volume element of sphere of radius r.

Q₁ = ρ x 4π x ∫ r² dr

The limit of integration is from 0 to r as r is less than R.

Q₁ = (4π x ρ x r³ )/3

But volume charge density, ρ = \frac{3Q}{4\pi R^{3} }

So, Q_{1} = \frac{Qr^{3} }{R^{3} }

Applying Gauss law of electrostatics ;

∫ E ds = Q₁/ε₀

Here E is electric field inside the sphere and ds is surface element of sphere of radius r.

Substitute the value of Q₁ in the above equation. Hence,

E x 4πr² = ( Q x r³) / ( R³ x ε₀ )

7 0
3 years ago
This is what occurs when matter transitions between solid, liquid and gas.
vodomira [7]

Answer:

The answer is Phase Change

Explanation:

4 0
3 years ago
Read 2 more answers
Objects in our solar system, including planets and their moons, stay in orbit because of gravity and inertia. Draw a model to sh
coldgirl [10]

Answer:

You cant draw on brainly

Explanation:

6 0
2 years ago
Read 2 more answers
Other questions:
  • A force of 334 N has a work on an object of 823 J, what is the displacement that was made
    14·1 answer
  • A man can throw a ball a maximum horizontal distance of 56.1523 m. The acceleration of gravity is 9.8 m/s 2 . How far can he thr
    8·1 answer
  • Where are some places that cyber bullying occurs? Check all that apply
    10·1 answer
  • Difference between Pascal’s law and law of flotation
    14·1 answer
  • Question 12 of 20
    9·1 answer
  • What accommodations can be made for people with impaired vision?
    8·1 answer
  • If vector A =i+2j-k and vec A cross vec B =3i-j+5k. find vec B​​​
    9·1 answer
  • Circe the different elements in each of the following compounds (H2O, C6H12O6, OH, CO2, and BrOH
    5·1 answer
  • A single paragraph can be selected by triple in the paragraph. ture or false​
    12·1 answer
  • What is nature's heat tax, and how does it relate to energy use? drag the terms on the left to the appropriate blanks on the rig
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!