Explanation:
Pascal's principle, also called Pascal's law, in fluid (gas or liquid) mechanics, statement that, in a fluid at rest in a closed container, a pressure change in one part is transmitted without loss to every portion of the fluid and to the walls of the container.
Mass/volume is density so it’s 562g/72cm^3 so it’s roughly 7.805g per cubic centimeter
Answer:
i. The error is the rough convex mirror.
ii. This should be replaced with a smooth convex morror.
Explanation:
Reflection is dependent on the surface involved and has two types; diffuse and specular. When the surface is rough, diffused reflection is observed. The surface causes a distortion of the incident light (the rays would be reflected at different angles to one another) after reflection. This makes some rays to interfere with one another. While specular reflection is observed with a smooth surface.
In the statement, the rough convex mirror would produce a distorted reflection which would produce diffused reflection. The effect is that few or no rays (depending on the degree of how rough the surfce is) would be reflected to the other smooth, flat diagonal mirror.
Kinetic and Potential Energy HistoryA roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.Potential EnergyPotential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it <span>has very little kinetic energy.Kinetic Energy The word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. Hope this helped:))))</span>