15÷1/3= 45 so the students made 45 clay plates
Answer:
![[ln \frac{x(x^2 + 1)}{(x + 1)}]^\frac{3}{2}](https://tex.z-dn.net/?f=%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D)
Step-by-step explanation:
![\frac{3}{2} [ln x(x^2 + 1) - ln(x + 1)]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%20%5Bln%20x%28x%5E2%20%2B%201%29%20-%20ln%28x%20%2B%201%29%5D)
ln(m/n)= lnm - ln(n)
![\frac{3}{2}[ln x(x^2 + 1) - ln(x + 1)]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%5Bln%20x%28x%5E2%20%2B%201%29%20-%20ln%28x%20%2B%201%29%5D)
![\frac{3}{2}[ln \frac{x(x^2 + 1)}{(x + 1)}]](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D)
3/2 is before ln. so we move the fraction 3/2 to the exponent
as per log property we move the fraction to the exponent
![[ln \frac{x(x^2 + 1)}{(x + 1)}]^\frac{3}{2}](https://tex.z-dn.net/?f=%5Bln%20%5Cfrac%7Bx%28x%5E2%20%2B%201%29%7D%7B%28x%20%2B%201%29%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D)
They are equivalent because they have the same numbers and when you do the math it give 96 for both of them
Step-by-step explanation:
Given AB = CD
<em>ADDING</em><em> </em><em>BC</em><em> </em><em>ON</em><em> </em><em>BOTH</em><em> </em><em>SIDES</em><em> </em>
<em>WE</em><em> </em><em>GET</em>
<em>AB</em><em>+</em><em>BC</em><em>=</em><em>CD</em><em>+</em><em>BC</em>
<em>THEREFORE</em><em> </em><em> </em><em>AC</em><em> </em><em>=</em><em>BD</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>HAVE</em><em> </em><em>A NICE DAY</em><em>!</em>
(Note: this is hard to explain without graphing. You might want to graph both of these lines just to make sure I did this correctly. :))
Y = -4(x) is the y = mx + b where m = slope and b = the y intercept.
So the slope of line A is -4 / 1 and the y intercept is 0. (If it's 0 there is no point in writing it down, so it was left out of the equation.)
The slope of line B with be equal to the slope of line A, so we can fill that in our equation. y = -4 x + ??
We know that y increases as x decreases.
Now we just need to scale 8, -3 down until x = 0.
(8 - 4, -3 + 1) = (4, -2)
(4 - 4, -2 + 1) = (0, -1)
y = -4x -1 is your final answer. Hope that helps! :)