Answer: 7.78m/s
Explanation: As the the skier slide down the height, we assume the motion of a body, slidind down an incline plane.
Force down the plane= [email protected]
Frictional force= umg
u= coefficient of friction
Net force on skier = [email protected] umg
ma = [email protected]
a = g([email protected] - u) = 9.8 (sin 25- 0.2)
a = 9.8 × (0.4226-0.2) = 9.8 × 0.2226
a = 2.18m/s²
Using the formula V² = U² + 2aH
Where H = (10.4+ 3.5)=total height of descent before landing, U= 0.
V = √ 2 × 2.18× 13.9 = √60.604
V = 7.78m/s
when we need to represent the magnetic field in a specific region where it is given that magnetic field lines are perpendicular to the plane and going inside the plane then we always use the concept of representation by "X"
here this symbol represents that field lines are going into the plane
it is also the uniform magnetic field always
so the correct answer would be
<u>Magnetic Field</u>
If E = 1/2 * m * v^2
v = (2E/m)^1/2
so the larger the mass, the higher the velocity hence taylor is moving faster
Answer:
when an object is moving
Explanation:
it turns into kinetic energy
Answer:
356.33 J
Explanation:
Energy: This can be defined as the ability or the capacity to do work. The S.I unit of Energy is Joules (J).
The Energy stored in a capacitor = 1/2CV²
E = 1/2CV².............................. Equation 1.
Where E = Energy stored in a capacitor, C = capacitance of the capacitor, V = potential difference across the plates of the capacitor.
Given: C = 10.5 μF = 10.5×10⁻⁶ F, V = 8250 V.
Substitute into equation 1
E = 1/2(10.5×10⁻⁶)(8250)²
E = 357.33 J.
Thus the energy stored in the defibrillator = 356.33 J