The pressure at a certain depth underwater is:
P = ρgh
P = pressure, ρ = sea water density, g = gravitational acceleration near Earth, h = depth
The pressure exerted on the submarine window is:
P = F/A
P = pressure, F = force, A = area
The area of the circular submarine window is:
A = π(d/2)²
A = area, d = diameter
Set the expressions for the pressure equal to each other:
F/A = ρgh
Substitute A:
F/(π(d/2)²) = ρgh
Isolate h:
h = F/(ρgπ(d/2)²)
Given values:
F = 1.1×10⁶N
ρ = 1030kg/m³ (pulled from a Google search)
g = 9.81m/s²
d = 30×10⁻²m
Plug in and solve for h:
h = 1.1×10⁶/(1030(9.81)π(30×10⁻²/2)²)
h = 1540m
Maunder minimum is related to climate due to the unusually low sunspot activity correlates to
unusually cold climatic events. The answer is letter A. It happened
around 1645 and 1715 and also coincided with the phenomena ‘Little Ice Age’
(1500 – 1850) in the Northern Hemisphere.
Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components
The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components
So we have enough information to solve for the components of the acceleration vector, and :
The acceleration vector then has direction where
I'm not sure but I had this question on a benchmark I think its the density of the wire you need to find the density or the mass I'm not sure but i do remember this question