Answer:
A) 3.13 m/s
B) 5.34 N
C) W = 26.9 J
Explanation:
We are told that the position as a function of time is given by;
x(t) = αt² + βt³
Where;
α = 0.210 m/s² and β = 2.04×10^(−2) m/s³ = 0.0204 m/s³
Thus;
x(t) = 0.21t² + 0.0204t³
A) Velocity is gotten from the derivative of the displacement.
Thus;
v(t) = x'(t) = 2(0.21t) + 3(0.0204t²)
v(t) = 0.42t + 0.0612t²
v(4.5) = 0.42(4.5) + 0.0612(4.5)²
v(4.5) = 3.1293 m/s ≈ 3.13 m/s
B) acceleration is gotten from the derivative of the velocity
a(t) = v'(t) = 0.42 + 2(0.0612t)
a(4.5) = 0.42 + 2(0.0612 × 4.5)
a(4.5) = 0.9708 m/s²
Force = ma = 5.5 × 0.9708
F = 5.3394 N ≈ 5.34 N
C) Since no friction, work done is kinetic energy.
Thus;
W = ½mv²
W = ½ × 5.5 × 3.1293²
W = 26.9 J
IF the toss was straight upward, then the kinetic energy it got
from the toss is the gravitational potential energy it has at the top,
where it stops rising and starts falling.
Potential energy = (mass) x (gravity) x (height)
= (0.15 kg) x (9.8 m/s²) x (20 m)
= 29.4 kg-m²/s² = 29.4 joules .
Answer:
44.8 m/s
Explanation:
Use the Initial Speed Formula:
InS = 2(d/t) - Final Speed
InS = 2(55/1,25) - 43.2
InS = 2.44 - 43,2
InS = 88 - 43,2
InS = 44.8 m/s
Answer:
2.87 km/s
Explanation:
radius of planet, R = 1.74 x 10^6 m
Mass of planet, M = 7.35 x 10^22 kg
height, h = 2.55 x 10^6 m
G = 6.67 x 106-11 Nm^2/kg^2
Use teh formula for acceleration due to gravity


g = 1.62 m/s^2
initial velocity, u = ?, h = 2.55 x 10^6 m , final velocity, v = 0
Use third equation of motion

0 = v² - 2 x 1.62 x 2.55 x 10^6
v² = 8262000
v = 2874.37 m/s
v = 2.87 km/s
Thus, the initial speed should be 2.87 km/s.
Resistance = (voltage) / (current)
Resistance = (6.0 v) / (2.0 A)
Resistance = 3.0 ohms