1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PilotLPTM [1.2K]
3 years ago
10

What would Hubble's constant be if we found one galaxy moving away at 30,000 km/s at a distance of 600 Mpc?

Physics
1 answer:
lora16 [44]3 years ago
3 0

Answer:

H₀ = 1.6 x 10⁻¹⁸ s⁻¹

Explanation:

The Hubble's Constant can be found by the following formula:

v = H_o D\\\\H_o = \frac{v}{D}

where,

H₀ = Hubble's Constant = ?

v = speed of galaxy = 30000 km/s = 3 x 10⁷ m/s

D = Distacance = 600 Mpc = (6 x 10⁸ pc)(3.086 x 10¹⁶ m/1 pc)

D = 18.52 x 10²⁴ m

Therefore,

H_o = \frac{3\ x\ 10^7\ m/s}{18.52\ x\ 10^{24}\ m}

<u>H₀ = 1.6 x 10⁻¹⁸ s⁻¹</u>

You might be interested in
Examples of how thermal energy transfer by conduction, convection, or radiation.
____ [38]
Microwave Radiation. Microwave radiation utilizes short, high-frequency waves that penetrate food, which agitates its water molecules to create friction and transfer heat. If you're heating a solid substance, this heat energy is transferred throughout the food through conduction, while liquids do so through convection.
3 0
3 years ago
The resolution of a camera or other optical system is determined by the relationship between what two scales?
devlian [24]

Answer:

d.The wavelength of light and the size of the aperture

Explanation:

<em>The resolution power of an optical system is the smallest distance between two points that the device can distinguish clearly.</em>

It has the following relationship:

r=\frac{\lambda}{2n}

where:

r = minimum resolvable distance

n = numerical aperture

\lambda= wavelength of the light used for viewing

From above mathematical equation it is clear that:

  • Smaller the wavelength better the resolving power
  • Larger the aperture better the resolution

(Note, that smaller the value of "r" the more finer details of the image visible through the device.)

4 0
3 years ago
Which one of the following types of training involves 10 to 30 minutes of high-intensity exercise?
Goshia [24]

Correct answer choice is:



C. Medium range



Explanation:



Medium range exercises are used to gain extra strength and fitness. Usually, heavyweights are used with less number of repetitions. These sort of exercises are mostly the hardest t do. All you need is to have a high level of motivation and stamina, which can be gained by running or cycling.

5 0
3 years ago
Read 2 more answers
On the way to the moon, the Apollo astronauts reach a point where the Moon’s gravitational pull is stronger than that of Earth’s
Drupady [299]

Answer:

rm = 38280860.6[m]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

6 0
3 years ago
Life cycle of a medium mass star
miskamm [114]

Our sun is a medium mass star, so it wouldn't be too different from the sun's life cycle. It is born, lives for about 10 billion years and then dies. ... As a medium mass star nears the end of its life, it runs out of hydrogen which it has been fusing onto helium in its core for its whole life.

8 0
3 years ago
Other questions:
  • How do you find the mechanical advantage of a wheel and axle
    11·1 answer
  • At the county fair, Chris throws a 0.12kg baseball at a 2.4kg wooden milk bottle, hoping to knock it off its stand and win a pri
    14·1 answer
  • A single slit forms a diffraction pattern, with the first minimum at an angle of 40.0° from central maximum, when monochromatic
    8·1 answer
  • Which moon of uranus has the greatest variety of landforms of any body yet examined?
    10·2 answers
  • Romeo lanza suavemente guijarros a la ventana de julieta y quiere que los guijarros golpeen la ventana solo con con un component
    15·1 answer
  • Convert the following to scientific notation: 45,700. A. 4.57 × 103 B. 4.57 × 104 C. 4.57 × 10-3 D. 4.57 × 10-4
    15·1 answer
  • certification programs are available at all of the following except A. online schools B. vocational school C. community colleges
    8·2 answers
  • How much force does it take to bring a 1,050 N car from rest to a velocity of 42 m/s in 13 seconds?
    14·1 answer
  • Two life preservers have identical volumes, but one is filled with Styrofoam while the other is filled with sand. When the two l
    11·1 answer
  • Please can someone solve this physics question with a good explenation.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!