Answer:
At a deceleration of 60g, or 60 times the acceleration due to gravity a person will travel a distance of 0.38 m before coing to a complete stop
Explanation:
The maximum acceleration of the airbag = 60 g, and the duration of the acceleration = 36 ms or 36/1000 s or 0.036 s
To find out how far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60g
we write out the equation of motion thus.
S = ut + 0.5at²
wgere
S = distance to come to complete stop
u = final velocoty = 0 m/s
a = acceleration = 60g = 60 × 9.81
t = time = 36 ms
as can be seen, the above equation calls up the given variable as a function of the required variable thus
S = 0×0.036 + 0.5×60×9.81×0.036² = 0.38 m
At 60g, a person will travel a distance of 0.38 m before coing to a complete stop
Answer:
A
B

C

D

Explanation:
Considering the first question
From the question we are told that
The spring constant is 
The potential energy is 
Generally the potential energy stored in spring is mathematically represented as 
=>
=>
=>
Considering the second question
From the question we are told that
The mass of the dart is m = 0.050 kg
Generally from the law of energy conservation

=> 
=> 
Considering the third question
The height at which the dart was fired horizontally is 
Generally from the law of energy conservation

Here KE is kinetic energy of the dart which is mathematical represented as

=> 
=> 
=> 
Considering the fourth question
Generally the total time of flight of the dart is mathematically represented as

=> 
=> 
Generally the horizontal distance from the equilibrium position to the ground is mathematically represented as

=> 
=> 
Answer:
nods 40th anniversary rid off e 49en9 snns
A)Linear motion
If there is not net force on the car, then by the Newton Second Law, the acceleration is zero, and the only valid option for zero acceleration is A).