Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
Answer:
6
Explanation:
The magnetic field inside a solenoid is given by the following formula:

where,
B = Magnetic Field Inside Solenoid
μ₀ = permittivity of free space
n = No. of turns per unit length
I = Current Passing through Solenoid
For Solenoid 1:

For Solenoid 2:
n₂ = 6n₁
Therefore,

Diving equation 1 and equation 2:

Hence, the correct option is:
<u>6</u>
Answer: The correct answer is B
Explanation: The string is pulling right and the string is unraveling causing it to accelerate left
Answer:
D). Uranus.
Explanation:
Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.
As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, <u>option D</u> is the correct answer.
Answer:
The net Electric field at the mid point is 289.19 N/C
Given:
Q = + 71 nC = 
Q' = + 42 nC = 
Separation distance, d = 1.9 m
Solution:
To find the magnitude of electric field at the mid point,
Electric field at the mid-point due to charge Q is given by:



Now,
Electric field at the mid-point due to charge Q' is given by:



Now,
The net Electric field is given by:

