Answer:
It is the force that is present because of the mass of our planet. it's what keeps us stuck on the surface of Earth rather than floating off into space.
Answer:
9.801 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 39 ft/s
s = Displacement = 720 cm = 7.2 m
a = Acceleration
Converting to m/s

Equation of motion

Acceleration of the ball is 9.801 m/s²
True, for example, sound waves are known for vibrating and they move up and down in a particular pattern depending on the pitch and volume. :) Hope this helps x
Answer:
F = 4856.32 N
Explanation:
Given,
A satellite is orbiting earth at a distance from Earth surface, h = 35000 m
The mass of the satellite, m = 500 Kg
The radius of the Earth, R = 6.371 x 10⁶ m
The mass of the Earth, M = 5.972 x 10²⁴ Kg
The gravitational constant, G = 6.67408 x 10 ⁻¹¹ m³ kg⁻¹ s⁻²
The force between the Earth and the satellite is given by the formula
F = GMm/(R+h)² N
Substituting the values in the above equation
F = (6.67408 x 10 ⁻¹¹ X 5.972 x 10²⁴ X 500) / (6.371 x 10⁶ + 35000)²
= 4856.32 N
Hence, the force between the planet and the satellite is, F = 4856.32 N
You did 150.j of work lifting a 120.N back