Answer:
To convert inches to centimeters, use an easy formula and multiply the length by the conversion ratio.
Since one inch is equal to 2.54 centimeters, this is the inches to cm formula to conver
Explanation:
Answer:
Explanation:
The Balmer series in a hydrogen atom relates the possible electron transitions down to the n = 2 position to the wavelength of the emission that scientists observe. In quantum physics, when electrons transition between different energy levels around the atom (described by the principal quantum number, n) they either release or absorb a photon. The Balmer series describes the transitions from higher energy levels to the second energy level and the wavelengths of the emitted photons. You can calculate this using the Rydberg formula.
Answer:
A. 148.23 m
B. 2.75 m/s
Explanation:
The following data were obtained from the question:
Time of flight (T) = 11 s
Maximum height (h) =?
Initial velocity (u) =?
Next, we shall determine the time taken for the ball to get to the maximum height. This can be obtained as follow:
Time of flight (T) = 11 s
Time (t) to reach the maximum height =.?
T = 2t
11 = 2t
Divide both side by 2
t = 11/2
t = 5.5 s
NOTE: Time to reach the maximum height is the same as the time taken for the ball to fall back to the plane of projection.
A. Determination of the maximum height to which the ball was thrown.
Time (t) to reach maximum height = 5.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =?
h = ½gt²
h = ½ × 9.8 × 5.5²
h = 4.9 × 30.25
h = 148.23 m
B. Determination of the initial velocity.
Maximum height (h) reached = 148.23 m
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =?
u² = h/2g
u² = 148.23 / (2 × 9.8)
u² = 148.23 / 19.6
Take the square root of both side
u = √(148.23 / 19.6)
u = 2.75 m/s