V=0 v²=0, A=v-u/t. T=v-u/a. T= 0-9.32/-4.06 therefore time = 2.296 seconds
Answer:

Explanation:
We can solve the problem by using Kepler's third law, which states that the ratio between the cube of the orbital radius and the square of the orbital period is constant for every object orbiting the Sun. So we can write

where
is the distance of the new object from the sun (orbital radius)
is the orbital period of the object
is the orbital radius of the Earth
is the orbital period the Earth
Solving the equation for
, we find
![r_o = \sqrt[3]{\frac{r_e^3}{T_e^2}T_o^2} =\sqrt[3]{\frac{(1.50\cdot 10^{11}m)^3}{(365 d)^2}(180 d)^2}=9.4\cdot 10^{10} m](https://tex.z-dn.net/?f=r_o%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7Br_e%5E3%7D%7BT_e%5E2%7DT_o%5E2%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%281.50%5Ccdot%2010%5E%7B11%7Dm%29%5E3%7D%7B%28365%20d%29%5E2%7D%28180%20d%29%5E2%7D%3D9.4%5Ccdot%2010%5E%7B10%7D%20m)
Answer:37 J
Explanation:
Given
Step :1
Heat added Q=44 J
Work done=-20 J

Step :2
Heat added Q=-61 J
work done 



as the process is cyclic


work done in compression is 37 J
Answer:
Explained
Explanation:
Newton would resort to the classical mechanics and say that the momentum of the particle that is moving with a constant velocity will be given by: momentum = mass x velocity
this approach will highlight the particle nature and will not be relativistic.
De-Broglie will say that the momentum of the particle is related to its associated matter wave and the relation between them is given by:

where \lambda = wavelength of the matter wave associated to the particle, h = planck's constant
and
thus, this highlights the wave nature of the particle and is also relativistic.