You will need too know the mass and velocity
Answer:
This formula R =ρL/A
Where R = resistance of wire, ρ = resistivity of the wire and A = area of the wire. Shows there is an inverse relationship between Resistance and Area of the wire.
Explanation:
A simple way to explain the physics behind such an electrical code is to compare the flow of current through wires to the flow of water through pipes, they are similar in any respect. The resistance to the flow of current in an electric circuit is similar to the frictional experienced by water when flowing through water pipes. Just as water will flow easily with little resistance through a water pipe with the larger cross-sectional area than one with a smaller cross-sectional area, in the same way, wires with larger cross-sectional area will allow the flow of larger amount of current compared to wires with smaller cross-sectional area assuming all other variables are the same.
From the formula R =ρL/A
Where R = resistance of wire, ρ = resistivity of the wire and A = area of the wire
We can see that the resistance and area of the wire have an inverse relationship. An increase in the area of the wire will lead to a decrease in the resistance of the wire.
Answer:
Explanation:
Given that:
The radius of the table r = 16 cm = 0.16 m
The angular velocity = 45 rpm
=
= 4.71 rad/s
However, the relative velocity of the bug with turntable is:
v = 3.5 cm/s = 0.035 m/s
Thus, the time taken to reach the bug to the end is:
t = 4.571s
So the angle made by the radius r with the horizontal during the time the bug gets to the end is:
Now, the velocity components of the bug with respect to the table is:
Also, for the vertical component of the velocity
There are approximately 3 different types of atoms that are present in one molecule of aluminum hydroxide, AI(OH)3.
Answer:
B)The motion of water in an ocean current
Explanation:
With respect to measurements, a vector has both a magnitude and a direction. The first three examples (maximum height of a hill, air temperature, and rain accumulation) are magnitudes only. The fourth example (motion of water in an ocean current) is a vector, because it has a magnitude (speed) and a direction (with the current).