Answer:
<u><em>(B.) a significantly lower mass that protons</em></u>
Explanation:
The mass (in g) of an electron is 9.11 ×
g, which is significantly lower than the mass of protons and neutrons which are approximately the same. They are extremely small (equal to 0 amu), contributing nothing to the overall mass of the atom.
The nucleus has a mass of 1 amu and is positively charged.
Answer:
O2 is limiting reactant
Explanation:
To find the limiting reactant we need to convert the mass of each reactant to the moles using the formula weight. And, as 1 mole of C6H12O6 reacts with 6 moles of O2, we can know wich reactant will be over first (Limiting reactant) as follows:
<em>Moles C6H12O6:</em>
650g * (1mol/180.16g) = 3.608 moles C6H12O6
<em>Moles O2:</em>
650g * (1mol/32g) = 20.31 moles O2
Now, for a complete reaction of 3.608 moles of C6H12O6 are required:
3.608 moles C6H12O6 * (6mol O2 / 1mol C6H12O6) = 21.65 moles O2
As there are just 20.31 moles of O2,
<h3>O2 is limiting reactant</h3>
Answer is: 2. dillute acids feel slipper.
1) Acids are corrosive is correct. For example hydrochloric acid (HCl) will react with most metals.
2) Dillute acids feel slippery is not correct. Bases, for example solution of sodium hydroxide feels slipery.
3) Acids have a distinctly sour taste is correct. For example, vinegar is mixture of acetic acid (CH₃COOH) and water (H₂O). Vinegar is colourless liquid with sour taste and pungent smell, freezing point of the vinegar is lower than glacial acetic acid.
4) Acids have more hydronium ions than hydroxide ions is correct. Because acid gives a lot of hydrogen cations (H⁺), pH (pH = -log[H⁺]) is lower than seven (acidic solution).
Answer:
I play none but If I did I would choose Xbox
btw, thank you
Solubility is the maximum amount of a substance that will dissolve in a given amount of solvent at a specific temperature. There are two direct factors that affect solubility: temperature and pressure. Temperature affects the solubility of both solids and gases, but pressure only affects the solubility of gases.