Answer:
0.25M HCl
Explanation:
The reaction of HCl with NaOH is:
HCl + NaOH ⇄ H₂O + NaCl
<em>Where 1 mole of HCl reacts per mole of NaOH</em>
The end point was reached when the student added:
0.0500L × (0.1mol / L) = 0.00500 moles of NaOH
As 1 mole of HCl reacted per mole of NaOH, moles of HCl present are:
<em>0.00500 moles HCl</em>
The volume of the sample of hydrochloric acid was 20.0mL = 0.0200L, and concentration of the sample is:
0.00500 mol HCl / 0.0200L = <em>0.25M HCl</em>
Answer:
Kc = 0.5951 (4 sig. figs.)
Explanation:
For A + B ⇄ C + D at standard thermodynamic conditions (298K, 1atm)
ΔG = ΔG° + R·T·lnQ => 0 = ΔG° + R·T·lnKc => ΔG° = - R·T·lnKc
=> lnKc = - ΔG°/R·T
ΔG° = +12.86 Kj/mol
R = 8.314 Kj/mol·K
T = 298K
lnKc = - (+12.86Kj) / (8.314Kj/mol·K)(298K) = - 0.519 mol⁻¹
Kc = e⁻⁰°⁵¹⁹ mol⁻¹ = 0.5957 mol⁻¹ (4 sig. figs.)
Answer:
1
Explanation:
in my opinion,The answer would be organism
please mark me as brainliest
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.