The complex, highly technical formula for capacitors is
<em>Q = C V</em>
Charge = (capacitance) (voltage)
Charge = (3 F) (24 V)
<em>Charge = 72 Coulombs</em>
The positive plate of the capacitor is missing 72 coulombs worth of electrons. They were sucked into positive terminal of the battery stack.
The negative plate of the capacitor has 72 coulombs worth of extra electrons. They came from the negative terminal of the battery stack.
You should be aware that this is a humongous amount of charge ! An average <u><em>lightning bolt</em></u>, where electrons flow between a cloud and the ground for a short time, is estimated to transfer around <u><em>15 coulombs</em></u> of charge !
The scenario in the question involves a "supercapacitor". 3 F is is no ordinary component ... One distributor I checked lists one of these that's able to stand 24 volts on it, but that product costs $35 apiece, you have to order at least 100 of them at a time, and they take 2 weeks to get.
Also, IF you can charge this animal to 24 volts, it will hold 864J of energy. You'd probably have a hard time accomplishing this task with a bag of leftover AA batteries.
I believe there are two correct answers, and those answers are A and D
Question is from B to C
Answer: (b) 1.5m/s
x1=3m, x2=9m
t1=1s, t2=5s
Displacement, ∆x=(9-3)m=6m
Time elapsed, ∆t=(5-1)s=4s
So average velocity v =∆x/∆t=6/4=1.5m/s
Answer:
The answer is D.
Explanation:
They vibrate parallel to the wave.
During the propagation of a sound wave in air, the vibrations of the particles are most accurately represented as longitudinal. Longitudinal waves are waves in which the motion of the individual particles of the medium occurs in a direction that is parallel to the direction of energy transmission.