Answer:
Decreases by
times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e. 
In the context when the distance was 3 m, the intensity of the sound was = 
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by = 
=
times
A car is built from various subsystems. If these subsystems are not working properly it is dangerous because it can cause a serious traffic accident.
<h3>What subsystems do cars have?</h3>
When you're testing the build of a car, you have to check its many subsystems:
- the battery
- the engine
- the cabin
- the thermal-management system
- the gearbox
- the chassis
- the suspension
<h3>Why is a car with damaged subsystems dangerous?</h3>
The subsystems of a car are very important components that allow the proper functioning of the car. These subsystems work synchronously making the car work properly.
However, if one of these subsystems is not working properly it could cause a malfunction that could lead to a traffic accident.
Learn more about cars in: brainly.com/question/11733094
Answer:
Ossicles
Explanation:
Sound causes eardrums to vibrate. These vibrations are then passed on to the ossicles, which is made up of 3 small bones-- the malleus, incus, and stapes. The stapes are connected to the inner ear, specifically to the cochlea which transforms sound waves into electrical signals that are sent to the brain.
Answer:
Solid-state
Explanation:
A solid-state device can be defined as a crystalline material that is typically made up of semiconductor and as such controls the number and rate of flow of charged carriers such as holes or electrons.
Some examples of a solid-state device are light emitting diodes (LED), integrated circuit (IC), Transistors, liquid crystal display (LCD) etc.
A solid-state device such as a transistor, refers to a semiconductor component that is used to control the flow of voltage or current and as a gate (switch) for electronic signals. Thus, a transistor allows for the amplification, control and generation of electronic signals in a circuit.
Hence, solid-state devices need constant power to operate. The timing functions are initiated by the presence or absence of a separate "trigger" signal.
Basically, these solid-state devices use the optical and electrical properties of semiconductor components such as transistors, triacs, thyristors, diodes to perform its input-output switching and isolation functions.