Answer:
The maximum potential difference or current can be increased by:
1. increasing the rate of rotation.
2. increasing the strength of the magnetic field.
3. increasing the number of turns on the coil.
<span>EP (potential energy) = mgy -> (59)(9.8)(-5) = -2,891
EP + EK (kinetic energy) = 0; but rearranging it for EK makes it EK = -EP, such that EK = 2891 when plugged in.
EK = 0.5mv^2, but can also be v = sqrt(2EK/m).
Plugging that in for sqrt((2 * 2891)/59), we get 9.9 m/s^2 with respect to significant figures.</span>
Based on the calculations, the angle through which the tire rotates is equal to 4.26 radians and 244.0 degrees.
<h3>How to calculate the angle?</h3>
In Physics, the distance covered by an object in circular motion can be calculated by using this formula:
S = rθ
<u>Where:</u>
- r is the radius of a circular path.
- θ is the angle measured in radians.
Substituting the given parameters into the formula, we have;
1.87 = 0.44 × θ
θ = 1.87/0.44
θ = 4.26 radians.
Next, we would convert this value in radians to degrees:
θ = 4.26 × 180/π
θ = 4.26 × 180/3.142
θ = 244.0 degrees.
Read more on radians here: brainly.com/question/19758686
#SPJ1
Answer:
the pressure at B is 527psf
Explanation:
Angular velocity, ω = v / r
ω = 20 /1.5
= 13.333 rad/s
Flow equation from point A to B
![P_A+rz_A-\frac{1}{2} Pr_A^2w^2=P_B+rz_B-\frac{1}{2} pr^2_Bw^2\\\\P_B = P_A + r(z_A-z_B)+\frac{1}{2} pw^2[(r_B^2)-(r_A)^2]\\\\P_B = [25 +(0.8+62.4)(0-1)+\frac{1}{2}(0.8\times1.94)\times(13.333)^2[2.5^2-1.5^2] ]\\\\P_B = 25 - 49.92+551.79\\\\P_B = 526.87psf\\\approx527psf](https://tex.z-dn.net/?f=P_A%2Brz_A-%5Cfrac%7B1%7D%7B2%7D%20Pr_A%5E2w%5E2%3DP_B%2Brz_B-%5Cfrac%7B1%7D%7B2%7D%20pr%5E2_Bw%5E2%5C%5C%5C%5CP_B%20%3D%20P_A%20%2B%20r%28z_A-z_B%29%2B%5Cfrac%7B1%7D%7B2%7D%20pw%5E2%5B%28r_B%5E2%29-%28r_A%29%5E2%5D%5C%5C%5C%5CP_B%20%3D%20%5B25%20%2B%280.8%2B62.4%29%280-1%29%2B%5Cfrac%7B1%7D%7B2%7D%280.8%5Ctimes1.94%29%5Ctimes%2813.333%29%5E2%5B2.5%5E2-1.5%5E2%5D%20%20%5D%5C%5C%5C%5CP_B%20%3D%2025%20-%2049.92%2B551.79%5C%5C%5C%5CP_B%20%3D%20526.87psf%5C%5C%5Capprox527psf)
the pressure at B is 527psf