A ball falling through the air has a mass, a density, a volume...it is facing air resistance and is being acted on by gravity...it is accelerating and gaining velocity...and it is increasing in kinetic energy.
I suppose out of all those the biggest thing the ball has in this case is ENERGY. There are two main types to focus on...
Kinetic Energy - The further the ball fall the more KE it has...until terminal velocity is reach, then KE would become constant.
Potential Energy - Conversely to that of KE, the further the ball falls the less PE it will have.
<em>Heat/Thermal Energy is technically also present due to the friction from the air resistance, but the transfer of energy between the air and ball is quite complex and not necessary important for basic physics.
</em>
The question itself seem kind of vague and open ended, but I could just be viewing it the wrong way.
Comment if you need more help!
Answer:
some kind of chemical of which i do not know
Explanation:
Refer to the diagram shown below.
Assume that
(a) The piano rolls down on frictionless wheels,
(b) Wind resistance is negligible.
The distance along the ramp is
d = (1.3 m)/sin(22°) = 3.4703 m
The component of the piano's weight along the ramp is
mg sin(22°)
If the acceleration down the ramp is a, then
ma = mg sin(22°)
a = g sin(22°) = (9.8 m/s²) sin(22°) = 3.671 m/s²
The time, t, to travel down the ramp from rest is given by
(3.4703 m) = 0.5*(3.671 m/s²)*(t s)²
t² = 3.4703/1.8355 = 1.8907
t = 1.375 s
Answer: 1.375 s
Answer:
100/10 = 10 , 10 × 10 = 100÷20 = 5
I'm pretty sure its wrong
T= 3.34
Vi= 0
A= 9.81
D= ?
d=Vit+1/2at^2
d= 1/2(9.81)(3.34)2
d= 54.7 or 55 meters tall