1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
3 years ago
13

Solve for x

}" align="absmiddle" class="latex-formula">+\frac{x}{3}=−2
Mathematics
1 answer:
valkas [14]3 years ago
4 0

Answer:

I've shown the process in the picture .

hope u understand

You might be interested in
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
A rectangular prism has a volume of 750 cubic millimeters. Its length is 15
umka2103 [35]

Answer: 5 milimeters.

Step-by-step explanation:

The formula for calculate the volume of a rectangular prism is:

V=lwh

Where "V"  is the volume, "l" is the lenght, "w" is the width and "h" is the height.

You know that the volume, the lenght, and the width of this rectangular prism are:

V=750mm^3\\l=15mm\\w=10mm

Substitutute these values into the formula and solve for the the height "h":

750mm^3=(15mm)(10mm)h\\\\h=\frac{750mm}{(15mm)(10mm)}\\\\h=5mm

5 0
3 years ago
Which of the following rational functions is graphed below?
Nezavi [6.7K]

Answer:

I think it is A

5 0
3 years ago
What is the next fraction in this sequence? Simplify your answer. 3/4, 1/4, 1/12, 1/36
antiseptic1488 [7]
Hey their,

3/4 
1/4
1/12
1/36
0/60

The pattern is -1/x every 2 +x/8 

How i got this was 36/12=3
3*12=36
so 60-36=24
24x3/2+24=60
then 60/5=12

Hopethis helped


7 0
4 years ago
Please complete the following with explanation:
satela [25.4K]

Answer:

b.

Step-by-step explanation:

Factor 25p^ 2 -81q^ 2 : (5p + 9q)(5p - 9q)

Steps

25p ^ 2 - 81q ^ 2

=(5p)^ 2 -(9q)^ 2

Apply Difference of Two Squares Formula: x ^ 2 - y ^ 2 = (x + y)(x - y)

(5p) ^ 2 - (9q) ^ 2 = (5p + 9q)(5p - 9q)

=(5p+9q)(5p-9q)

8 0
3 years ago
Other questions:
  • Functions f(x) and g(x) are shown below: f(x) g(x) f(x) = −4(x − 6)2 + 3 graph of cosine function which starts at 0 comma 2 and
    13·1 answer
  • Solve for g.<br> 4(g - 17) = 12<br> g=
    6·2 answers
  • URGENT BRAINLIEST GIVEN
    14·1 answer
  • What is the y-value of the solution to the system of equations?
    15·2 answers
  • Rewrite ×3×3×33 using an exponent
    12·1 answer
  • How to find the altitude Of A Trapezoid Without Knowing The Area
    11·1 answer
  • What is 40% of $20? Show your work.
    8·2 answers
  • When taking a measurement with a pH meter, keep the instrument in the Choose... until it is needed. Rinse the pH meter with Choo
    12·1 answer
  • Brody works at the ticket booth at the movie theater. He sold 25 adult tickets and several child tickets during his first hour a
    15·1 answer
  • PLEASE DUE IN 17 MINUTES
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!