Answer: Remain unchanged
Explanation:
The boat with water barrel overboard floats in swimming pool when weight of the water displaced by the boat is equal to the buoyant force acting on the boat.
When the water in the barrel is poured overboard, the level of the swimming pool level would remain unchanged as the weight of the boat with the water and barrel would remain unchanged ( as the density and volume of the whole system remains same) and hence, the weight of the water (of the swimming pool) displaced by the boat would remain same.
A boat loaded with a barrel of water floats in a swimming pool. When the water in the barrel is poured overboard, the swimming pool level will <u>remain unchanged. </u>
Taking into account the rule of three for the change of units, the mass of the book is 45600 miligrams.
First of all, the rule of three is a mathematical tool that helps you quickly solve proportionality problems.
Having three known values and one unknown, a proportional relationship is established between all of them in order to find the fourth term of the proportion.
If the relationship between the magnitudes is direct (when one magnitude increases, so does the other; or when one magnitude decreases, so does the other), the rule of three is applied as follows, where a, b and c are known values and x is the unknown to calculate:
a → b
c → x
So: 
Being 1 kg equivalent to 1000000 milligrams, In this case the rule of three is applied as follows: if 1 kg equals 1000000 milligrams, 4.56×10⁻² kg equals how many milligrams?
1 kg → 1000000 milligrams
4.56×10⁻² kg → x
So:

<u><em>x=45600 miligrams</em></u>
In summary, the mass of the book is 45600 miligrams.
Learn more:
Answer:
It will take 8.80 sec to fall from the building
Explanation:
We have given height pf the state building h = 380 m
Initial velocity will be 0 m /sec
So u = 0 m/sec
Acceleration due to gravity 
We have to find the fall time
According to second equation of motion 
So 

t = 8.80 sec
Yes because you would have at least 3 car spaces
Weight. Because there is less gravity on the moon.