Answer:
The radius of the earth is 6,371 km.
The average Earth-Sun distance is 152.09 million km
How many Earths would fit between Earth and the Sun if they are separated by their average distance? Approximately 11,936 Earths.
I didn't really understand the last part, but if you don't get a better answer please mark me as brainliest.
The image distance can be determined using the mirror equation: 1/f = 1/d_o + 1/d_i, where, f is the focal length, d_o is the object distance, and d_i is the image distance. Given that f = 28.2 and d_o = 33.2 cm, the value of d_i is calculated to be 187.248 cm. On the other hand, the image height is obtained using the magnification equation wherein, h_i/h_o = -d_i/d_o, where h_i is the image height and h_o is the object height. Using the given values, h_i is equal to -26.79 cm. Note that the negative sign indicates that the image is inverted.
We're going to multiply the time it took for you to hear thunder (3.5 seconds) by the speed of sound in air (340 m/s)
3.5 x 340 = 1190
The lightning bolt was 1,190 meters away.
So we want to explain the effects of time dilation. In theory of relativity time dilation is the difference of elapsed time between two events when measured by two observers who are moving relatively to each other. A clock of an observer that is standing still in an inertial frame of reference is going to measure a different time of an event than the clock of an observer that is moving with some velocity with respect to the inertial reference frame that is not moving. In a nutshell, the moving clock is ticking slower than the clock that is standing still.