Its a thermometer . i hope this helps you
Answer:
(C) Only if it starts moving
Explanation:
We know that work done is given by
So there are two case in which work done is zero
First case is that when force and displacement are perpendicular to each other
And other case is that when there is no displacement
So for work to be done there must have displacement, if there is no displacement then there is no work done
So option (c) will be the correct option
(6) first choice: the frequency appears higher and wavelength is shorter.
The car approaches a stationary observer and so the sound will appear to have shorter wavelength. This creates an effect of its siren to sound with higher frequency than it would do if both were stationary.
(7) The Doppler formula for frequency in the case of a stationary observer and source approaching it is as follows:
The wavelength is then
The third choice "0.80m; 431Hz" is correct
Answer:
The correct answer is "24 V".
Explanation:
The given values are:
Current,
I = 0.50 A
Resistance,
R = 12 W
As we know,
⇒
On substituting the given values, we get
⇒
⇒
⇒
Answer:
Explanation:
Using the magnification formula.
Magnification = Image distance(v)/object distance(u) = Image Height(H1)/Object Height(H2)
M = v/u = H1/H2
v/u = H1/H2...1
3) Given the radius of curvature of the concave lens R = 20cm
Focal length F = R/2
f = 20/2
f = 10cm
Object distance u = 5cm
Object height H2= 5cm
To get the image distance v, we will use the mirror formula
1/f = 1/u+1/v
1/v = 1/10-1/5
1/v = (1-2)/10
1/v =-1/10
v = -10cm
Using the magnification formula
(10)/5 = H1/5
10 = H1
H1 = 10cm
Image height of the peg is 10cm
4) If u = 15cm
1/v = 1/f-1/u
1/v = 1/10-1/15
1/v = 3-2/30
1/v = 1/30
v = 30cm
30/15 = H1/5
15H1 = 150
H1/= 10cm
5) if u = 20cm
1/v = 1/f-1/u
1/v = 1/10-1/20
1/v = 2-1/20
1/v = 1/20
v = 20cm
20/20 = H1/5
20H1 = 100
H1 = 5cm
6) If u = 30cm
1/v = 1/f-1/u
1/v = 1/10-1/30
1/v = 3-1/30
1/v = 2/30
v = 30/2 cm
v =>15cm
15/30 = Hi/5
30H1 = 75
H1 = 75/30
H1 = 2.5cm