Answer:
It would not be possible the cohesion among water molecules by the polar covalent bonding.
Well, to understand this in a better way, let's begin by explaining that water is special due to its properties, which makes this fluid useful for many purposes and for the existence of life.
In this sense, one of the main properties of water is cohesion (molecular cohesion), which is the attraction of molecules to others of the same type. So, water molecule (
) has 2 hydrogen atoms attached to 1 oxygen atom and can stick to itself through hydrogen bonds.
How is this possible?
By the polar covalent bonding, a process in which electrons are shared unequally between atoms, due to the unequal distribution of electrons between atoms of different elements. In other words: slightly positive and slightly negative charges appear in different parts of the molecule.
Now, it can be said that a water molecule has a negative side (oxygen) and a positive side (hydrogen). This is how the oxygen atom tends to monopolize more electrons and keeps them away from hydrogen. Thanks to this polarity, water molecules can stick together.
Answer:
The negative electrode of a battery has an excess of positive charge
Explanation:
This is because in every battery, there is a negative electrode ( cathode ) and only positive charge is deposited on it.
For other statements:
Batteries donot store electric charge but they store chemical energy
Some batteries donot use metals for the flow of electrons, but some use hydrogen gas at a pressure of 1 atmosphere.
Answer:
W = 46 J
Explanation:
We need to find the angle between the two vectors Force vector and displacement vector.
First we will find the angle α of the force vector

Then we find the angle β of the displacement vector

With these two angles we can find the angle between the two vectors
∅ = α + β = 25.56 deg
The definition of work is given by the expression

The absolute value of F will be:

The absolute value of d will be:

Now we have:

Answer:
The x-coordinate of the particle is 24 m.
Explanation:
In order to obtain the x-coordinate of the particle, you have to apply the equations for Two Dimension Motion
Xf=Xo+Voxt+0.5axt²(I)
Yf=Yo+Voyt+0.5ayt² (II)
Where Xo, Yo are the initial positions, Xf and Yf are the final positions, Vox and Voy are the initial velocities, ax and ay are the accerelations in x and y directions, t is the time.
The particle starts from rest from the origin, therefore:
Vox=Voy=0
Xo=Yo=0
Replacing Yf=12, Yo=0 and Voy=0 in (I) and solving for t:
12=0+(0)t+ 0.5(1.0)t²
12=0.5t²
Dividing by 0.5 and extracting thr squareroot both sides:
t=√12/0.5
t=√24 = 2√6
Replacing t=2√6, ax=2.0,Xo=0 and Vox=0 in (I) to obain the x-coordinate:
Xf=0+0t+0.5(2.0)(2√6)²
Xf= 24 m
Explanation:
F =(frac{1}{4{pi}{varepsilon}_o}) x (frac {q_1q_2}{r^2})
F =(frac {5 {times} 10 {times} 8 {times} 10}{0.002 {times} 0.002}) x 9 x 10
F = 900N