Answer:
The Physical Behavior of Objects when Gravity is Missing
In order to be able to form a concept of the general physical conditions existing in a weightless state, the following must be noted: the force of the Earth's gravity pulling all masses down to the ground and thus ordering them according to a certain regularity is no longer active.
Answer:
H(max) = (v²/2g)
Explanation:
The maximum height the ball will climb will be when there is no friction at all on the surface of the hill.
Normally, the conservation of kinetic energy (specifically, the work-energy theorem) states that, the change in kinetic energy of a body between two points is equal to the work done in moving the body between the two points.
With no frictional force to do work, all of the initial kinetic emergy is used to climb to the maximum height.
ΔK.E = W
ΔK.E = (final kinetic energy) - (initial kinetic energy)
Final kinetic energy = 0 J, (since the body comes to rest at the height reached)
Initial kinetic energy = (1/2)(m)(v²)
Workdone in moving the body up to the height is done by gravity
W = - mgH
ΔK.E = W
0 - (1/2)(m)(v²) = - mgH
mgH = mv²/2
gH = v²/2
H = v²/2g.
Answer:
an active galaxy is the galaxy that produces large amounts of energy in a very small volume of space.
Explanation:
active galaxies such as the M87 gives out extremely bright straight jets having speeds close to the speed of light providing the evidence that power in active galaxies is concentrated in a small region. this power from such a small region cannot be generated throught nuclear fusion as it happens in stars, this is the region why the concentration of matter in the center of this galaxies is not made up of stars.