The flowers reflect relatively low frequency and low amplitude light waves.
White light contains a spectrum of colors, and red light is at the beginning of this spectrum in terms of energy. This means that it has the lowest frequency, as the energy of a wave of light is directly proportional to its frequency.
The amplitude of a light wave gives a measure of how intense the light is. A dull light means that the amplitude of the wave is low.
energy associate with position or shape
Answer:
The ball would have landed 3.31m farther if the downward angle were 6.0° instead.
Explanation:
In order to solve this problem we must first start by doing a drawing that will represent the situation. (See picture attached).
We can see in the picture that the least the angle the farther the ball will go. So we need to find the A and B position to determine how farther the second shot would go. Let's start with point A.
So, first we need to determine the components of the velocity of the ball, like this:






we pick the positive one, so it takes 0.317s for the ball to hit on point A.
so now we can find the distance from the net to point A with this time. We can find it like this:



Once we found the distance between the net and point A, we can similarly find the distance between the net and point B:







t= -0.9159s or t=0.468s
we pick the positive one, so it takes 0.468s for the ball to hit on point B.
so now we can find the distance from the net to point B with this time. We can find it like this:



So once we got the two distances we can now find the difference between them:

so the ball would have landed 3.31m farther if the downward angle were 6.0° instead.
acceleration = Velocity changes ÷ time of the velocity changes
4 m/s^2 =
4 × 10^(-3) × 3600 km / h =
4 × 3.6 =
14.4 km / h
Thus :
14.4 = V(2) - V(1) / t(2) - t(1)
14.4 = V(2) - 20 / 10
Multiply both sides by 10
10 × 14.4 = 10 × ( V(2) - 20 ) / 10
144 = V(2) - 20
Add both sides 20
144 + 20 = V(2) - 20 + 20
V(2) = 164 Km/h
Thus the final velocity after 10 seconds is 164 Km/h .
The thermosphere is a layer of Earth's atmosphere. The thermosphere is directly above the mesosphere and below the exosphere. It extends from about 90 km (56 miles) to between 500 and 1,000 km (311 to 621 miles) above our planet.