Answer:
<h2>8.0995×10^-21 kgms^-1</h2>
Explanation:
Mass of proton :
Speed of Proton:
Linear Momentum of a particle having mass (m) and velocity (v) :
Magnitude of momentum :
Frome equation (2), magnitude of linear momentum of the proton :
Answer:
f = 19,877 cm and P = 5D
Explanation:
This is a lens focal length exercise, which must be solved with the optical constructor equation
1 / f = 1 / p + 1 / q
where f is the focal length, p is the distance to the object and q is the distance to the image.
In this case the object is placed p = 25 cm from the eye, to be able to see it clearly the image must be at q = 97 cm from the eye
let's calculate
1 / f = 1/97 + 1/25
1 / f = 0.05
f = 19,877 cm
the power of a lens is defined by the inverse of the focal length in meters
P = 1 / f
P = 1 / 19,877 10-2
P = 5D
Answer:
3430000 J
Explanation:
The formula for potential energy is PE=mgh.
M being the mass, g being the force of gravity, and h being the height.
First thing you want to do is convert 250 kg to g (grams).
From there you get 25000g and you have to multiply that by 14m and 9.8m/s^2 (the force of gravity is constant, at least on earth).
<span>Two plastic balls suspended by strings are placed close to each other. If they have the same charge then they will repel each other.</span>