Answer:
1. Cellular respiration is the process in which cells break down glucose, release the stored energy, and use it to make ATP. The process begins in the cytoplasm and is completed in a mitochondrion. Cellular respiration occurs in three stages: glycolysis, the Krebs cycle, and electron transport.
2. How much ATP is produced in all three stages combined? Glycolysis produces 2 ATP molecules, and the Krebs cycle produces 2 more. Electron transport from the molecules of NADH and FADH2 made from glycolysis, the transformation of pyruvate, and the Krebs cycle creates as many as 32 more ATP molecules.
3. Photosynthesis converts carbon dioxide and water into oxygen and glucose. ... Cellular respiration converts oxygen and glucose into water and carbon dioxide. Water and carbon dioxide are by- products and ATP is energy that is transformed from the process.
4. Aerobic respiration takes place in presence of oxygen; whereas anaerobic respiration takes place in absence of oxygen. Carbon dioxide and water are the end products of aerobic respiration, while alcohol is the end product of anaerobic respiration. Aerobic respiration releases more energy than anaerobic respiration.
Answer:
Yes
Explanation:
The given parameters are;
The speed with which the fastball is hit, u = 49.1 m/s (109.9 mph)
The angle in which the fastball is hit, θ = 22°
The distance of the field = 96 m (315 ft)
The range of the projectile motion of the fastball is given by the following formula

Where;
g = The acceleration due to gravity = 9.81 m/s², we have;

Yes, given that the ball's range is larger than the extent of the field, the batter is able to safely reach home.
Together, normal and reverse faults are called dip-slip faults, because the movement on them occurs along the dip direction -- either down or up, respectively. Reverse faults create some of the world's highest mountain chains, including the Himalaya Mountains and the Rocky Mountains .
When looking for distance you multiply speed by time
So 15 x 2 = 30
30 is the distance between his house and school
Here is the rule for see-saws here on Earth, and there is no reason
to expect that it doesn't work exactly the same anywhere else:
(weight) x (distance from the pivot) <u>on one side</u>
is equal to
(weight) x (distance from the pivot) <u>on the other side</u>.
That's why, when Dad and Tiny Tommy get on the see-saw, Dad sits
closer to the pivot and Tiny Tommy sits farther away from it.
(Dad's weight) x (short length) = (Tiny Tommy's weight) x (longer length).
So now we come to the strange beings on the alien planet.
There are three choices right away that both work:
<u>#1).</u>
(400 N) in the middle-seat, facing (200 N) in the end-seat.
(400) x (1) = (200) x (2)
<u>#2).</u>
(200 N) in the middle-seat, facing (100 N) in the end-seat.
(200) x (1) = (100) x (2)
<u>#3).</u>
On one side: (300 N) in the end-seat (300) x (2) = <u>600</u>
On the other side:
(400 N) in the middle-seat (400) x (1) = 400
and (100 N) in the end-seat (100) x (2) = 200
Total . . . . . . . . . . . . <u>600</u>
These are the only ones to be identified at Harvard . . . . . . .
There may be many others but they haven't been discarvard.