From Boyle's law, the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
Therefore; P1V1 =P2V2; where PV is a constant
hence; 12 × 6 = 3× p2
p2 = 72/3
= 24 atm
Therefore; the new pressure will be 24 atm
Answer:
Explanation:
To find Sammy's course you have to add the two velocities (vectors), 18 mph 327º and 4 mph 60º.
To add the two vectors analytically you decompose each vector into their vertical and horizontal components.
<u>1. 18 mph 327º</u>
- Horizontal component: 18 mph × cos (327º) = 15.10 mph
- Vertical component: 18 mph × sin (327º) = - 9.80 mph

<u>2. 4 mph 60º</u>
- Horizontal component: 4 mph × cos (60º) = 2.00 mph
- Vertical component: 4 mph × sin (60º) = 3.46 mph

<u>3. Addition:</u>
You add the corresponding components:

To find the magnitude use Pythagorean theorem:
<u>4. Direction:</u>
Use the tangent ratio:
Find the inverse:
Answer:
Electric field E = kQ/r^2
Distance between charges = 6.30 - (-4.40) = 10.70m
Say the neutral point, P, is a distance d from q1. This means it is a distance (10.70 - d) from q2.
Field from q1 at P = k(-9.50x^10^-6) / d^2
Field from q2 at P = k(-8.40x^10^-6) / (10.70-d)^2
These fields are in opposite directions and are equal magnitudes if the resultant field = 0
k(-9.50x^10^-6) / d^2 = k(-8.40x^10^-6) / (10.70-d)^2
9.50 / d^2 =8.40 / (10.70-d)^2
d^2 / (10.70-d)^2 = 9.50/8.40 = 1.131
d/(10.70-d) = sqrt(1.1331) = 1.063
d = 1.063 ((10.70-d)
= 10.63 - 1.063d
2.063d = 10.63
d = 5.15m
The y coordinate where field is zero is 6.30 - 5.15 = 1.15m
Explanation:
Answer:
E) d/sqrt2
Explanation:
The initial electric force between the two charge is given by:

where
k is the Coulomb's constant
q1, q2 are the two charges
d is the separation between the two charges
We can also rewrite it as

So if we want to make the force F twice as strong,
F' = 2F
the new distance between the charges would be

so the correct option is E.