Answer:
7.94 ft^3/ s.
Explanation:
So, we are given that the '''model will be 1/6 scale (the modeled valve will be 1/6 the size of the prototype valve)'' and the prototype flow rate is to be 700 ft3 /s. Then, we are asked to look for or calculate or determine the value for the model flow rate.
Note that we are to use Reynolds scaling for the velocity as par the instruction from the question above.
Therefore; kp/ks = 1/6.
Hs= 700 ft3 /s and the formula for the Reynolds scaling => Hp/Hs = (kp/ks)^2.5.
Reynolds scaling==> Hp/ 700 = (1/6)^2.5.
= 7.94 ft^3/ s
I am not sure I am stuck on this and I have been for 45 min someone please help me and this girl or boy!!
Answer:
Relative density = 0.545
Degree of saturation = 24.77%
Explanation:
Data provided in the question:
Water content, w = 5%
Bulk unit weight = 18.0 kN/m³
Void ratio in the densest state,
= 0.51
Void ratio in the loosest state,
= 0.87
Now,
Dry density, 

= 17.14 kN/m³
Also,

here, G = Specific gravity = 2.7 for sand

or
e = 0.545
Relative density = 
= 
= 0.902
Also,
Se = wG
here,
S is the degree of saturation
therefore,
S(0.545) = (0.05)()2.7
or
S = 0.2477
or
S = 0.2477 × 100% = 24.77%