Answer:
View Image
Explanation:
You didn't provide me a picture of the opamp.
I'm gonna assume that this is an ideal opamp, therefore the input impedance can be assumed to be ∞ . This basically implies that...
- no current will go in the inverting(-) and noninverting(+) side of the opamp
- V₊ = V₋ , so whatever voltage is at the noninverting side will also be the voltage at the inverting side
Since no current is going into the + and - side of the opamp, then
i₁ = i₂
Since V₊ is connected to ground (0V) then V₋ must also be 0V.
V₊ = V₋ = 0
Use whatever method you want to solve for v_out and v_in then divide them. There's so many different ways of solving this circuit.
You didn't give me what the input voltage was so I can't give you the entire answer. I'll just give you the equations needed to plug in your values to get your answers.
Answer:

Explanation:
Lets take the numerator of the fraction to be = x
So the denominator of the fraction is 4 more than the numerator = x+4
The fraction is ;
Now add 4 to the numerator and add 7 to the denominator as;

This new fraction is equal to 1 half =1/2
write the equation as;

perform cross-product
2(x+4 )=1( x+11 )
2x+8 = x + 11
2x-x = 11-8
x=3
The original fraction is;

Answer:
Mechanical Advantage Formula
The efficiency of a machine is equal to the ratio of its output to its input. It is also equal to the ratio of the actual and theoretical MAs. But, it does not mean that low-efficiency machines are of limited use. An automobile jack, for example, have to overcome a great deal of friction and therefore it has low efficiency. But still, it is extremely valuable because small effort can be applied to lift a great weight.
Also, in another way the mechanical advantage is the force generated by a machine to the force applied to it which is applied in assessing the performance of the machine.
The mechanical advantage formula is:
MA = FBFA
Explanation:
MAmechanical advantageFBthe force of the object
FAthe effort to overcome the force
The thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
<h3>
Thickness of the aluminum</h3>
The thickness of the aluminum can be determined using from distance of closest approach of the particle.

where;
- Z is the atomic number of aluminium = 13
- e is charge
- r is distance of closest approach = thickness of aluminium
- k is Coulomb's constant = 9 x 10⁹ Nm²/C²
<h3>For 2.5 MeV electrons</h3>

<h3>For 2.5 MeV protons</h3>
Since the magnitude of charge of electron and proton is the same, at equal kinetic energy, the thickness will be same. r = 1.5 x 10⁻¹⁴ m.
<h3>For 10 MeV alpha-particles</h3>
Charge of alpah particle = 2e

Thus, the thickness of aluminium needed to stop the beam electrons, protons and alpha particles at the given dfferent kinetic energies is 1.5 x 10⁻¹⁴ m.
Learn more about closest distance of approach here: brainly.com/question/6426420