Answer:
Tea is getting hot on the stove.
2) As the tea and water gets hot, some combined molecules of tea and water will escape from the teapot.
3) Those escaped molecules now have the entire free space of the entire room to float around in, which they do (because they have high kinetic energy due to being heated).
4) Hence, in this scenario, your nose will detect a few of those molecules and you smell hot or warm tea.
5) Cold tea would be a different story. Cold beverages like cold tea do not have the kinetic energy where molecules can 'break free' of the surrounding container. Someone could be sitting in the room having a can or bottle of cold tea and you would not notice that when you walked in the door.
In warmer weather gases tend to expand and take up more room, thus increasing pressure. but in colder weather they will condense or contract and take up less space, therefore lowering the pressure of the tire in this situation.
The formula for energy or enthalpy is:
E = m Cp (T2 – T1)
where E is energy = 63 J, m is mass = 8 g, Cp is the
specific heat, T is temperature
63 J = 8 g * Cp * (340 K – 314 K)
<span>Cp = 0.3 J / g K</span>
Unfortunately you did not specify the electronic configuration in the question, however since one of the answers must be a halogen, i took the liberty to attach an image with the configuration (both the simple numeric and spdf form) for all the halogen and all you have to do is match the electronic configuration you have in your question to the one in the table attached and you can then deduce the answer.
Hope this helps.