The question is incomplete, complete question is;
A solution of
is added dropwise to a solution that contains
of
and
and
.
What concentration of
is need to initiate precipitation? Neglect any volume changes during the addition.
value 
value 
What concentration of
is need to initiate precipitation of the first ion.
Answer:
Cadmium carbonate will precipitate out first.
Concentration of
is need to initiate precipitation of the cadmium (II) ion is
.
Explanation:
1) 
The expression of an solubility product of iron(II) carbonate :
![K_{sp}=[Fe^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BFe%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
![2.10\times 10^{-11}=0.58\times 10^{-2} M\times [CO_3^{2-}]](https://tex.z-dn.net/?f=2.10%5Ctimes%2010%5E%7B-11%7D%3D0.58%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%20%5BCO_3%5E%7B2-%7D%5D)
![[CO_3^{2-}]=\frac{2.10\times 10^{-11}}{1.15\times 10^{-2} M}](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B2.10%5Ctimes%2010%5E%7B-11%7D%7D%7B1.15%5Ctimes%2010%5E%7B-2%7D%20M%7D)
![[CO_3^{2-}]=1.826\times 10^{-9}M](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D1.826%5Ctimes%2010%5E%7B-9%7DM)
2) 
The expression of an solubility product of cadmium(II) carbonate :
![K_{sp}=[Cd^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCd%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
![1.80\times 10^{-14}=0.58\times 10^{-2} M\times [CO_3^{2-}]](https://tex.z-dn.net/?f=1.80%5Ctimes%2010%5E%7B-14%7D%3D0.58%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%20%5BCO_3%5E%7B2-%7D%5D)
![[CO_3^{2-}]=\frac{1.80\times 10^{-14}}{0.58\times 10^{-2} M}](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D%5Cfrac%7B1.80%5Ctimes%2010%5E%7B-14%7D%7D%7B0.58%5Ctimes%2010%5E%7B-2%7D%20M%7D)
![[CO_3^{2-}]=3.103\times 10^{-12} M](https://tex.z-dn.net/?f=%5BCO_3%5E%7B2-%7D%5D%3D3.103%5Ctimes%2010%5E%7B-12%7D%20M)
On comparing the concentrations of carbonate ions for both metallic ions, we can see that concentration to precipitate out the cadmium (II) carbonate from the solution is less than concentration to precipitate out the iron (II) carbonate from the solution.
So, cadmium carbonate will precipitate out first.
And the concentration of carbonate ions to start the precipitation of cadmium carbonate we will need concentration of carbonate ions greater than the
concentration.
The answer is silicon because it’s atomic number is 14
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
Explanation:
Given equation;
NaC₂H₃O₂ + Fe₂O₃ → Fe(C₂H₃O₂)₃ + Na₂O
To find the coefficient that will balance this we equation, let us set up simple mathematical algebraic expressions that we can readily solve.
Let us have at the back of our mind that, in every chemical reaction, the number of atom is usually conserved.
aNaC₂H₃O₂ + bFe₂O₃ → cFe(C₂H₃O₂)₃ + dNa₂O
a, b, c and d are the coefficients that will balance the equation.
conserving Na; a = 2d
C: 2a = 6c
H: 3a = 9c
O; 2a + 3b = 6c + d
Fe: 2b = c
let a = 1
solving:
2a = 6c
2(1) = 6c
c = 
2b = c
b =
= 
d = 2a + 3b - 6c = 2(1 ) + (3 x
) - (6 x
) = 
Now multiply through by 6
a = 6, b = 1, c = 2 and d = 3
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
learn more:
Balanced equation brainly.com/question/9325293
#learnwithBrainly
Answer:
1.427x10^-3mol per L
Explanation:

I could use ⇌ in the math editor so I used ----
from the question each mole of Y(IO3)3 is dissolved and this is giving us a mole of Y3+ and a mole of IO3^3-
Ksp = [Y^3+][IO3-]^3
So that,
1.12x10^-10 = [S][3S]^3
such that
1.12x10^-10 = 27S^4
the value of s is 0.001427mol per L
= 1.427x10^-3mol per L
so in conclusion
the molar solubility is therefore 1.427x10^-3mol per L
Answer:
<h2>Density = 1.67 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 50 g
volume = 30 mL
Substitute the values into the above formula and solve for the density
That's

Wr have the final answer as
<h3>Density = 1.67 g/mL</h3>
Hope this helps you