Answer:
Mass of sea food = 30.98 Kg
Mass of sea food in pound = 68.31 lbs
Explanation:
Salmon, crab and oysters all are sea food.
Mass of sea food = Mass of salmon + Mass of crab + mass of oyster
Mass of salmon = 22 kg
Mass of crab = 5.5 kg
Mass of oysters = 3.48 kg
Mass of sea food = Mass of salmon + Mass of crab + mass of oyster
= 22 + 5.5 + 3.48
= 30.98 Kg
1 Kg = 2.205 lbs
Therefore, 30.98 kg = 30.98 × 2.205
= 68.31 lbs
Answer:
3.49 g
Explanation:
The mass is the product of volume and density:
(8.96 g/cm³)(0.39 cm³) ≈ 3.49 g
The mass of a pure-copper penny would be 3.49 g.
If the dehydration reaction of an alcohol is successful. The changes would be seen in the IR spectrum for the product compared to the starting material are as,
- The O-H and C-O band is disappear from stating material
- The addition of a C-C double bond band in the product.
In dehydration reaction of alcohol ( O-H and C-O bond ) contain , the water molecule (
) is release from the reactant and C-C double bond is form which is known as alkene in the product .
The reactant and product have different structure. To determine the structure of the compound IR spectroscopy is used. In IR spectrum the peak corresponds to 3400-3600 cm is missing in the product of dehydration reaction of an alcohol. It means O-H band is disappear from stating material.
learn about IR SPECTRUM
brainly.com/question/15452269
#SPJ4
Answer: Temperature final = 103 °C
Explanation: To solve for final temperature we use the equation of heat:
Q= mc∆T
Next derive the equation to find final temperature
Q = mc(T final - T initial)
Q / mc = T final - T initial
Transpose T initial and change the sign so that T final will be left.
T final = Q / mc + T initial
Substitute the values:
T final = 305 J / 28.8 g x 0.128 J/(g°C)
= 305 J / 3.6864 J/°C
= 82.7 + 20.0°C
= 103 °C final temperature.